Câu hỏi:
Diện tích của hình phẳng giới hạn bởi hai đường thẳng \(y = 18{x^2}\) và \(y = 18x\) bằng
A. 6
B. 4
C. 2
D. 3
05/11/2021 8 Lượt xem
Câu 2: Cho hình phẳng (D) được giới hạn bởi các đường \(x = 0\), \(x = 1\), \(y = 0\) và \(y = \sqrt {2x + 1} \). Thể tích V của khối tròn xoay tạo thành khi quay (D) xung quanh trục Ox được tính theo công thức:
A. \(V = \int\limits_0^1 {\left( {2x + 1} \right)dx} \)
B. \(V = \pi \int\limits_0^1 {\sqrt {2x + 1} dx} \)
C. \(V = \pi \int\limits_0^1 {\left( {2x + 1} \right)dx} \)
D. \(V = \int\limits_0^1 {\sqrt {2x + 1} dx} \)
05/11/2021 9 Lượt xem
Câu 3: Trong mặt phẳng tọa độ (Oxy) cho hình phẳng D giới hạn bởi các đường \(y = 2{x^2}\), \(y = \frac{{{x^2}}}{8}\), \(y = - x + 6\). Tính diện tích hình phẳng D nằm bên phải của trục tung
A. \(S = \frac{{1075}}{{192}}\)
B. \(S = \frac{{135}}{{64}}\)
C. \(S = \frac{{185}}{{24}}\)
D. \(S = \frac{{335}}{{96}}\)
05/11/2021 7 Lượt xem
Câu 4: Cho số phức z thỏa mãn \(\frac{{3 - 4i}}{z} = \frac{{\left( {2 + 3i} \right)\overline z }}{{{{\left| z \right|}^2}}} + 2 + i\), giá trị của \(\left| z \right|\) bằng
A. \(\sqrt 5 \)
B. \(\sqrt {10} \)
C. 1
D. \(\sqrt 2 \)
05/11/2021 7 Lượt xem
Câu 5: Trong không gian Oxyz, cho mặt phẳng \(\left( P \right):x + y + 2{\rm{z}} - 2 = 0\). Phương trình của mặt phẳng chứa trục Oy và vuông góc với \(\left( P \right)\) là
A. \(2{\rm{x}} - z + 2 = 0\).
B. \(2x - z = 0\).
C. \(2x + z = 0\).
D. \(2x + y - z = 0.\)
05/11/2021 7 Lượt xem
Câu 6: Số phức z thỏa mãn \(2z - 3\left( {1 + i} \right) = iz + 7 - 3i\) là
A. \(z = \frac{{14}}{5} + \frac{8}{5}i.\)
B. \(z = 4 - 2i.\)
C. \(z = 4 + 2i.\)
D. \(z = \frac{{14}}{5} - \frac{8}{5}i.\)
05/11/2021 8 Lượt xem
Câu hỏi trong đề: Đề thi thử THPT QG năm 2021 môn Toán của Trường THPT Lê Quý Đôn
- 74 Lượt thi
- 90 Phút
- 50 Câu hỏi
- Học sinh
Chia sẻ:
Đăng Nhập để viết bình luận