Câu hỏi:

Có bao nhiêu số phức z thỏa mãn \(\left| {{z^2}} \right| = 2\left| {z - \overline z } \right|\) và \(\left| {z - 2 - 2i} \right| = \left| {z - 1 - i} \right|\) ?

410 Lượt xem
05/11/2021
3.9 10 Đánh giá

A. 2

B. 1

C. 3

D. 4

Đăng Nhập để xem đáp án
Câu hỏi khác cùng đề thi
Câu 1:

Họ các nguyên hàm của hàm số \(f\left( x \right) = {\left( {2x + 3} \right)^5}\) là

A. \(F\left( x \right) = 10{\left( {2x + 3} \right)^4} + C.\)

B. \(F\left( x \right) = 5{\left( {2x + 3} \right)^4} + C.\)

C. \(F\left( x \right) = \frac{{{{\left( {2x + 3} \right)}^6}}}{{12}} + C.\) 

D. \(F\left( x \right) = \frac{{{{\left( {2x + 3} \right)}^6}}}{6} + C.\)

Xem đáp án

05/11/2021 9 Lượt xem

Câu 5:

Cho đường thẳng \({d_1}:\,\,\left\{ \begin{array}{l}x = 4 - 2t\\y = t\\z = 3\end{array} \right.\,\,\left( {t \in \mathbb{R}} \right)\) và \({d_2}:\,\,\left\{ \begin{array}{l}x = 1\\y = t'\\z =  - t'\end{array} \right.\,\,\left( {t' \in \mathbb{R}} \right)\). Phương trình mặt cầu có bán kính nhỏ nhất tiếp xúc với cả hai đường thẳng \(\left( {{d_1}} \right),\,\,\left( {{d_2}} \right)\) là:

A. \({\left( {x + \frac{3}{2}} \right)^2} + {y^2} + {\left( {z + 2} \right)^2} = \frac{9}{4}\)

B. \({\left( {x + \frac{3}{2}} \right)^2} + {y^2} + {\left( {z + 2} \right)^2} = \frac{3}{2}\)

C. \({\left( {x - \frac{3}{2}} \right)^2} + {y^2} + {\left( {z - 2} \right)^2} = \frac{3}{2}\)

D. \({\left( {x - \frac{3}{2}} \right)^2} + {y^2} + {\left( {z - 2} \right)^2} = \frac{9}{4}\)

Xem đáp án

05/11/2021 7 Lượt xem

Chưa có bình luận

Đăng Nhập để viết bình luận

Đề thi thử THPT QG năm 2021 môn Toán của Trường THPT Lê Quý Đôn
Thông tin thêm
  • 75 Lượt thi
  • 90 Phút
  • 50 Câu hỏi
  • Học sinh