Câu hỏi:
Trong không gian Oxyz, cho mặt cầu \(\left( S \right):{\left( {x - 1} \right)^2} + {y^2} + {\left( {z + 2} \right)^2} = 4\) và điểm \(M\left( {3;1;2} \right)\). Điểm A di chuyển trên mặt cầu \(\left( S \right)\) thỏa mãn \(\overrightarrow {OA} .\overrightarrow {MA} = - 3\) thì A thuộc mặt phẳng nào trong các mặt phẳng sau?
A. x + y + 6z - 2 = 0
B. 3x + y + 2z - 3 = 0
C. 5x + y - 2z - 4 = 0
D. 2x - 4z - 1 = 0
Câu 1: Tích phân \(\int\limits_1^e {\frac{{\ln x}}{x}dx} \) bằng:
A. \(\frac{{{e^2} + 1}}{2}\)
B. \(\frac{1}{2}\)
C. \( - \frac{1}{2}\)
D. \(\frac{{{e^2} - 1}}{2}\)
05/11/2021 8 Lượt xem
05/11/2021 9 Lượt xem
Câu 3: Trong không gian \(Oxyz\), cho mặt phẳng \(\left( P \right):\,\,x + 2y - 2z - 2 = 0\) và điểm \(I\left( {1;2; - 3} \right)\). Bán kính của mặt cầu có tâm \(I\) và tiếp xúc với mặt phẳng \(\left( P \right)\) bằng:
A. 1
B. \(\frac{{11}}{3}\)
C. 3
D. \(\frac{1}{3}\)
05/11/2021 7 Lượt xem
Câu 4: Cho hai hàm số \(f\left( x \right);g\left( x \right)\) liên tục trên đoạn \(\left[ {a;b} \right]\). Diện tích hình phẳng giới hạn bởi đồ thị \(y = f\left( x \right),y = g\left( x \right)\) và các đường thẳng \(x = a,x = b\) bằng
A. \(\int\limits_a^b {\left| {f\left( x \right) + g\left( x \right)} \right|dx} \)
B. \(\int\limits_a^b {\left| {f\left( x \right) - g\left( x \right)} \right|dx} \)
C. \(\int\limits_a^b {\left[ {f\left( x \right) + g\left( x \right)} \right]dx} \)
D. \(\left| {\int\limits_a^b {\left[ {f\left( x \right) + g\left( x \right)} \right]dx} } \right|.\)
05/11/2021 7 Lượt xem
Câu 5: Diện tích của hình phẳng giới hạn bởi đồ thị hàm số \(y = {\left( {x - 2} \right)^2} - 1\), trục hoành và hai đường thẳng \(x = 1;\) \(x = 2\) bằng
A. \(\frac{7}{3}.\)
B. \(\frac{2}{3}.\)
C. \(\frac{3}{2}.\)
D. \(\frac{1}{3}.\)
05/11/2021 7 Lượt xem
Câu 6: Cho tứ diện MNPQ có MQ vuông góc với mặt phẳng \(\left( {MNP} \right)\),\(MP = MQ = 3,\) \(MN = 4,\) \(NP = 5\). Khoảng cách từ M đến mặt phẳng \(\left( {NPQ} \right)\) bằng
A. \(\frac{{6\sqrt {41} }}{{41}}\)
B. \(\frac{{4\sqrt {41} }}{{41}}\)
C. \(\frac{{24\sqrt {41} }}{{41}}\)
D. \(\frac{{12\sqrt {41} }}{{41}}\)
05/11/2021 8 Lượt xem
Câu hỏi trong đề: Đề thi thử THPT QG năm 2021 môn Toán của Trường THPT Lê Quý Đôn
- 75 Lượt thi
- 90 Phút
- 50 Câu hỏi
- Học sinh
Cùng danh mục Thi THPT QG Môn Toán
- 2.2K
- 286
- 50
-
97 người đang thi
- 1.3K
- 122
- 50
-
59 người đang thi
- 971
- 35
- 50
-
68 người đang thi
- 857
- 31
- 50
-
40 người đang thi
Chia sẻ:
Đăng Nhập để viết bình luận