Câu hỏi:
Trong không gian Oxyz, cho mặt cầu \(\left( S \right):{\left( {x - 1} \right)^2} + {y^2} + {\left( {z + 2} \right)^2} = 4\) và điểm \(M\left( {3;1;2} \right)\). Điểm A di chuyển trên mặt cầu \(\left( S \right)\) thỏa mãn \(\overrightarrow {OA} .\overrightarrow {MA} = - 3\) thì A thuộc mặt phẳng nào trong các mặt phẳng sau?
A. x + y + 6z - 2 = 0
B. 3x + y + 2z - 3 = 0
C. 5x + y - 2z - 4 = 0
D. 2x - 4z - 1 = 0
Câu 1: Có bao nhiêu giá trị nguyên dương của tham số m để phương trình \({25^x} - {2.15^x} + \left( {m - 4} \right){.9^x} = 0\) có nghiệm dương ?
A. 3
B. 2
C. 4
D. 5
05/11/2021 7 Lượt xem
Câu 2: Cho hai hàm số \(f\left( x \right);g\left( x \right)\) liên tục trên đoạn \(\left[ {a;b} \right]\). Diện tích hình phẳng giới hạn bởi đồ thị \(y = f\left( x \right),y = g\left( x \right)\) và các đường thẳng \(x = a,x = b\) bằng
A. \(\int\limits_a^b {\left| {f\left( x \right) + g\left( x \right)} \right|dx} \)
B. \(\int\limits_a^b {\left| {f\left( x \right) - g\left( x \right)} \right|dx} \)
C. \(\int\limits_a^b {\left[ {f\left( x \right) + g\left( x \right)} \right]dx} \)
D. \(\left| {\int\limits_a^b {\left[ {f\left( x \right) + g\left( x \right)} \right]dx} } \right|.\)
05/11/2021 7 Lượt xem
Câu 3: Trong không gian Oxyz, phương trình tham số của đường thẳng đi qua điểm \(M\left( {2;0; - 1} \right)\) và có vecto chỉ phương \(\overrightarrow a = \left( {2; - 3;1} \right)\) là
A. \(\left\{ \begin{array}{l}x = 2 + 2t\\y = - 3t\\z = - 1 + t\end{array} \right.\)
B. \(\left\{ \begin{array}{l}x = 4 + 2t\\y = - 6\\z = 2 - t\end{array} \right.\)
C. \(\left\{ \begin{array}{l}x = - 2 + 2t\\y = - 3t\\z = 2 - t\end{array} \right.\)
D. \(\left\{ \begin{array}{l}x = - 2 + 4t\\y = - 6t\\z = 1 + 2t\end{array} \right.\)
05/11/2021 7 Lượt xem
Câu 4: Cho đường thẳng \({d_1}:\,\,\left\{ \begin{array}{l}x = 4 - 2t\\y = t\\z = 3\end{array} \right.\,\,\left( {t \in \mathbb{R}} \right)\) và \({d_2}:\,\,\left\{ \begin{array}{l}x = 1\\y = t'\\z = - t'\end{array} \right.\,\,\left( {t' \in \mathbb{R}} \right)\). Phương trình mặt cầu có bán kính nhỏ nhất tiếp xúc với cả hai đường thẳng \(\left( {{d_1}} \right),\,\,\left( {{d_2}} \right)\) là:
A. \({\left( {x + \frac{3}{2}} \right)^2} + {y^2} + {\left( {z + 2} \right)^2} = \frac{9}{4}\)
B. \({\left( {x + \frac{3}{2}} \right)^2} + {y^2} + {\left( {z + 2} \right)^2} = \frac{3}{2}\)
C. \({\left( {x - \frac{3}{2}} \right)^2} + {y^2} + {\left( {z - 2} \right)^2} = \frac{3}{2}\)
D. \({\left( {x - \frac{3}{2}} \right)^2} + {y^2} + {\left( {z - 2} \right)^2} = \frac{9}{4}\)
05/11/2021 7 Lượt xem
Câu 5: Trong không gian Oxyz, cho hai điểm \(A\left( {1; - 2;3} \right),\) \(B\left( {3;2; - 2} \right)\) và mặt phẳng \(\left( P \right):x + 2y - 4z - 7 = 0\). Đường thẳng AB cắt mặt phẳng \(\left( P \right)\) tại M. Giá trị của biểu thức \(\frac{{MA}}{{MB}}\) bằng
A. \(\frac{5}{{21}}.\)
B. 1
C. \(\frac{1}{3}.\)
D. \(\frac{{11}}{4}.\)
05/11/2021 7 Lượt xem
Câu 6: Trong không gian Oxyz, mặt cầu \(\left( S \right):{x^2} + {y^2} + {z^2} - 8x + 2y + 1 = 0\) có tọa độ tâm I và bán kính R lần lượt là
A. \(I\left( { - 4;1;0} \right);\,\,R = 4.\)
B. \(I\left( {8; - 2;0} \right);\,\,R = 2\sqrt 7 .\)
C. \(I\left( {4; - 1;0} \right);\,\,R = 4.\)
D. \(I\left( {4; - 1;0} \right);\,\,R = 16.\)
05/11/2021 8 Lượt xem
Câu hỏi trong đề: Đề thi thử THPT QG năm 2021 môn Toán của Trường THPT Lê Quý Đôn
- 75 Lượt thi
- 90 Phút
- 50 Câu hỏi
- Học sinh
Cùng danh mục Thi THPT QG Môn Toán
- 2.2K
- 286
- 50
-
33 người đang thi
- 1.3K
- 122
- 50
-
62 người đang thi
- 971
- 35
- 50
-
58 người đang thi
- 857
- 31
- 50
-
91 người đang thi
Chia sẻ:
Đăng Nhập để viết bình luận