Câu hỏi:
Cho hàm số \(F\left( x \right) = {x^2}\) là một nguyên hàm của hàm số \(f\left( x \right){e^{4{\rm{x}}}}\), hàm số \(f\left( x \right)\) có đạo hàm \(f'\left( x \right)\)
Họ nguyên hàm của hàm số \(f'\left( x \right){e^{4{\rm{x}}}}\) là
A. \( - 4{x^2} + 3x + C.\)
B. \( - 4{x^2} + 2x + C.\)
C. \(4{x^2} + 2x + C.\)
D. \( - 4{x^2} + x + C.\)
Câu 1: Trong không gian \(Oxyz\), cho mặt phẳng \(\left( P \right):\,\,x + 2y - 2z - 2 = 0\) và điểm \(I\left( {1;2; - 3} \right)\). Bán kính của mặt cầu có tâm \(I\) và tiếp xúc với mặt phẳng \(\left( P \right)\) bằng:
A. 1
B. \(\frac{{11}}{3}\)
C. 3
D. \(\frac{1}{3}\)
05/11/2021 7 Lượt xem
05/11/2021 6 Lượt xem
Câu 3: Cho đường thẳng \({d_1}:\,\,\left\{ \begin{array}{l}x = 4 - 2t\\y = t\\z = 3\end{array} \right.\,\,\left( {t \in \mathbb{R}} \right)\) và \({d_2}:\,\,\left\{ \begin{array}{l}x = 1\\y = t'\\z = - t'\end{array} \right.\,\,\left( {t' \in \mathbb{R}} \right)\). Phương trình mặt cầu có bán kính nhỏ nhất tiếp xúc với cả hai đường thẳng \(\left( {{d_1}} \right),\,\,\left( {{d_2}} \right)\) là:
A. \({\left( {x + \frac{3}{2}} \right)^2} + {y^2} + {\left( {z + 2} \right)^2} = \frac{9}{4}\)
B. \({\left( {x + \frac{3}{2}} \right)^2} + {y^2} + {\left( {z + 2} \right)^2} = \frac{3}{2}\)
C. \({\left( {x - \frac{3}{2}} \right)^2} + {y^2} + {\left( {z - 2} \right)^2} = \frac{3}{2}\)
D. \({\left( {x - \frac{3}{2}} \right)^2} + {y^2} + {\left( {z - 2} \right)^2} = \frac{9}{4}\)
05/11/2021 7 Lượt xem
05/11/2021 8 Lượt xem
Câu 5: Tích phân \(\int\limits_1^e {\frac{{\ln x}}{x}dx} \) bằng:
A. \(\frac{{{e^2} + 1}}{2}\)
B. \(\frac{1}{2}\)
C. \( - \frac{1}{2}\)
D. \(\frac{{{e^2} - 1}}{2}\)
05/11/2021 8 Lượt xem
Câu 6: Cho tứ diện MNPQ có MQ vuông góc với mặt phẳng \(\left( {MNP} \right)\),\(MP = MQ = 3,\) \(MN = 4,\) \(NP = 5\). Khoảng cách từ M đến mặt phẳng \(\left( {NPQ} \right)\) bằng
A. \(\frac{{6\sqrt {41} }}{{41}}\)
B. \(\frac{{4\sqrt {41} }}{{41}}\)
C. \(\frac{{24\sqrt {41} }}{{41}}\)
D. \(\frac{{12\sqrt {41} }}{{41}}\)
05/11/2021 8 Lượt xem

Câu hỏi trong đề: Đề thi thử THPT QG năm 2021 môn Toán của Trường THPT Lê Quý Đôn
- 75 Lượt thi
- 90 Phút
- 50 Câu hỏi
- Học sinh
Cùng danh mục Thi THPT QG Môn Toán
- 2.0K
- 284
- 50
-
32 người đang thi
- 1.2K
- 122
- 50
-
21 người đang thi
- 839
- 35
- 50
-
90 người đang thi
- 730
- 31
- 50
-
66 người đang thi
Chia sẻ:
Đăng Nhập để viết bình luận