Câu hỏi:
Cho hàm số \(F\left( x \right) = {x^2}\) là một nguyên hàm của hàm số \(f\left( x \right){e^{4{\rm{x}}}}\), hàm số \(f\left( x \right)\) có đạo hàm \(f'\left( x \right)\)
Họ nguyên hàm của hàm số \(f'\left( x \right){e^{4{\rm{x}}}}\) là
A. \( - 4{x^2} + 3x + C.\)
B. \( - 4{x^2} + 2x + C.\)
C. \(4{x^2} + 2x + C.\)
D. \( - 4{x^2} + x + C.\)
Câu 1: Cho tích phân \(I = \int\limits_0^\pi {{x^2}\cos xdx} \) và đặt \(u = {x^2},\,\,dv = \cos xdx\). Mệnh đề nào sau đây là mệnh đề
đúng?
đúng?
A. \(I = \left. {{x^2}\sin x} \right|_0^\pi - \int\limits_0^\pi {x.\sin xdx} \)
B. \(I = \left. {{x^2}.\sin x} \right|_0^\pi + 2\int\limits_0^\pi {x.\sin xdx} \)
C. \(I = \left. {{x^2}\sin x} \right|_0^\pi - 2\int\limits_0^\pi {x.\sin xdx} \)
D. \(I = \left. {{x^2}\sin x} \right|_0^\pi + \int\limits_0^\pi {x.\sin xdx} \)
05/11/2021 8 Lượt xem
Câu 2: Trong không gian Oxyz, phương trình tham số của đường thẳng đi qua điểm \(M\left( {2;0; - 1} \right)\) và có vecto chỉ phương \(\overrightarrow a = \left( {2; - 3;1} \right)\) là
A. \(\left\{ \begin{array}{l}x = 2 + 2t\\y = - 3t\\z = - 1 + t\end{array} \right.\)
B. \(\left\{ \begin{array}{l}x = 4 + 2t\\y = - 6\\z = 2 - t\end{array} \right.\)
C. \(\left\{ \begin{array}{l}x = - 2 + 2t\\y = - 3t\\z = 2 - t\end{array} \right.\)
D. \(\left\{ \begin{array}{l}x = - 2 + 4t\\y = - 6t\\z = 1 + 2t\end{array} \right.\)
05/11/2021 7 Lượt xem
Câu 3: Trong không gian với hệ tọa độ Oxy, tìm trên trục Oz điểm M cách đều điểm A(2;3;4) và mặt phẳng \(\left( P \right):\,\,2x + 3y + z - 17 = 0\).
A. \(M\left( {0;0; - 3} \right)\)
B. \(M\left( {0;0;3} \right)\)
C. \(M\left( {0;0; - 4} \right)\)
D. \(M\left( {0;0;4} \right)\)
05/11/2021 9 Lượt xem
Câu 4: Trong không gian Oxyz, cho mặt phẳng \(\left( P \right):x + y + 2{\rm{z}} - 2 = 0\). Phương trình của mặt phẳng chứa trục Oy và vuông góc với \(\left( P \right)\) là
A. \(2{\rm{x}} - z + 2 = 0\).
B. \(2x - z = 0\).
C. \(2x + z = 0\).
D. \(2x + y - z = 0.\)
05/11/2021 7 Lượt xem
Câu 5: Diện tích của hình phẳng giới hạn bởi hai đường thẳng \(y = 18{x^2}\) và \(y = 18x\) bằng
A. 6
B. 4
C. 2
D. 3
05/11/2021 7 Lượt xem
Câu 6: Cho đường thẳng \({d_1}:\,\,\left\{ \begin{array}{l}x = 4 - 2t\\y = t\\z = 3\end{array} \right.\,\,\left( {t \in \mathbb{R}} \right)\) và \({d_2}:\,\,\left\{ \begin{array}{l}x = 1\\y = t'\\z = - t'\end{array} \right.\,\,\left( {t' \in \mathbb{R}} \right)\). Phương trình mặt cầu có bán kính nhỏ nhất tiếp xúc với cả hai đường thẳng \(\left( {{d_1}} \right),\,\,\left( {{d_2}} \right)\) là:
A. \({\left( {x + \frac{3}{2}} \right)^2} + {y^2} + {\left( {z + 2} \right)^2} = \frac{9}{4}\)
B. \({\left( {x + \frac{3}{2}} \right)^2} + {y^2} + {\left( {z + 2} \right)^2} = \frac{3}{2}\)
C. \({\left( {x - \frac{3}{2}} \right)^2} + {y^2} + {\left( {z - 2} \right)^2} = \frac{3}{2}\)
D. \({\left( {x - \frac{3}{2}} \right)^2} + {y^2} + {\left( {z - 2} \right)^2} = \frac{9}{4}\)
05/11/2021 7 Lượt xem
Câu hỏi trong đề: Đề thi thử THPT QG năm 2021 môn Toán của Trường THPT Lê Quý Đôn
- 74 Lượt thi
- 90 Phút
- 50 Câu hỏi
- Học sinh
Chia sẻ:
Đăng Nhập để viết bình luận