Câu hỏi:
Trong không gian Oxyz, phương trình mặt cầu có tâm \(I\left( { - 1;1; - 2} \right)\) và đi qua điểm \(A\left( {2;1;2} \right)\) là
A. \({\left( {x + 1} \right)^2} + {\left( {y - 1} \right)^2} + {\left( {z + 2} \right)^2} = 25.\)
B. \({\left( {x + 1} \right)^2} + {\left( {y - 1} \right)^2} + {\left( {z + 2} \right)^2} = 5.\)
C. \({\left( {x - 2} \right)^2} + {\left( {y - 1} \right)^2} + {\left( {z - 2} \right)^2} = 25.\)
D. \({\left( {x - 1} \right)^2} + {\left( {y + 1} \right)^2} + {\left( {z - 2} \right)^2} = 25.\)
Câu 1: Trong không gian Oxyz, cho mặt phẳng \(\left( P \right):x + y + 2{\rm{z}} - 2 = 0\). Phương trình của mặt phẳng chứa trục Oy và vuông góc với \(\left( P \right)\) là
A. \(2{\rm{x}} - z + 2 = 0\).
B. \(2x - z = 0\).
C. \(2x + z = 0\).
D. \(2x + y - z = 0.\)
05/11/2021 7 Lượt xem
Câu 2: Họ nguyên hàm của hàm số \(f\left( x \right) = \sin 2x\) là
A. \(F\left( x \right) = - \frac{1}{2}\cos 2x + C.\)
B. \(F\left( x \right) = - \cos 2x + C.\)
C. \(F\left( x \right) = - 2\cos 2x + C.\)
D. \(F\left( x \right) = \frac{1}{2}\cos 2x + C.\)
05/11/2021 8 Lượt xem
Câu 3: Cho số phức \(z = 1 - 2i\). Tính \(\left| z \right|\).
A. \(\left| z \right| = 5\)
B. \(\left| z \right| = \sqrt 5 \)
C. \(\left| z \right| = 3\)
D. \(\left| z \right| = 2\)
05/11/2021 7 Lượt xem
Câu 4: Họ các nguyên hàm của hàm số \(f\left( x \right) = {\left( {2x + 3} \right)^5}\) là
A. \(F\left( x \right) = 10{\left( {2x + 3} \right)^4} + C.\)
B. \(F\left( x \right) = 5{\left( {2x + 3} \right)^4} + C.\)
C. \(F\left( x \right) = \frac{{{{\left( {2x + 3} \right)}^6}}}{{12}} + C.\)
D. \(F\left( x \right) = \frac{{{{\left( {2x + 3} \right)}^6}}}{6} + C.\)
05/11/2021 9 Lượt xem
Câu 5: Gọi z là một nghiệm của phương trình \({z^2} - z + 1 = 0\). Giá trị của biểu thức \(M = {z^{2019}} + {z^{2018}} + \frac{1}{{{z^{2019}}}} + \frac{1}{{{z^{2018}}}} + 5\) bằng
A. 5
B. 2
C. 7
D. -1
05/11/2021 6 Lượt xem
Câu 6: Cho hình phẳng (D) được giới hạn bởi các đường \(x = 0\), \(x = 1\), \(y = 0\) và \(y = \sqrt {2x + 1} \). Thể tích V của khối tròn xoay tạo thành khi quay (D) xung quanh trục Ox được tính theo công thức:
A. \(V = \int\limits_0^1 {\left( {2x + 1} \right)dx} \)
B. \(V = \pi \int\limits_0^1 {\sqrt {2x + 1} dx} \)
C. \(V = \pi \int\limits_0^1 {\left( {2x + 1} \right)dx} \)
D. \(V = \int\limits_0^1 {\sqrt {2x + 1} dx} \)
05/11/2021 9 Lượt xem

Câu hỏi trong đề: Đề thi thử THPT QG năm 2021 môn Toán của Trường THPT Lê Quý Đôn
- 75 Lượt thi
- 90 Phút
- 50 Câu hỏi
- Học sinh
Cùng danh mục Thi THPT QG Môn Toán
- 2.0K
- 284
- 50
-
90 người đang thi
- 1.2K
- 122
- 50
-
95 người đang thi
- 851
- 35
- 50
-
13 người đang thi
- 743
- 31
- 50
-
33 người đang thi
Chia sẻ:
Đăng Nhập để viết bình luận