Câu hỏi:
Một người gửi 200 triệu đồng vào một ngân hàng với lãi suất \(r\% /\)năm\(\left( {r > 0} \right)\). Nếu không rút tiền ra khỏi ngân hàng thì cứ sau mỗi năm số tiền lãi sẽ được nhập vào tiền gốc để tính lãi cho năm tiếp theo. Sau ngày gửi 4 năm, người đó nhận được số tiền gồm cả tiền gốc và tiền lãi là 252 495 392 đồng( biết rằng trong suốt thời gian gửi tiền, lãi suất không thay đổi và người đó không rút tiền ra khỏi ngân hàng). Lãi suất \(r\% /\)năm\(\left( {r > 0} \right)\) (r làm tròn đến chữ số hàng đơn vị) là
A. 6%/năm.
B. 5%/năm.
C. 8%/năm.
D. 7%/năm.
Câu 1: Tích phân \(\int\limits_1^e {\frac{{\ln x}}{x}dx} \) bằng:
A. \(\frac{{{e^2} + 1}}{2}\)
B. \(\frac{1}{2}\)
C. \( - \frac{1}{2}\)
D. \(\frac{{{e^2} - 1}}{2}\)
05/11/2021 8 Lượt xem
Câu 2: Cho hai hàm số \(f\left( x \right);g\left( x \right)\) liên tục trên đoạn \(\left[ {a;b} \right]\). Diện tích hình phẳng giới hạn bởi đồ thị \(y = f\left( x \right),y = g\left( x \right)\) và các đường thẳng \(x = a,x = b\) bằng
A. \(\int\limits_a^b {\left| {f\left( x \right) + g\left( x \right)} \right|dx} \)
B. \(\int\limits_a^b {\left| {f\left( x \right) - g\left( x \right)} \right|dx} \)
C. \(\int\limits_a^b {\left[ {f\left( x \right) + g\left( x \right)} \right]dx} \)
D. \(\left| {\int\limits_a^b {\left[ {f\left( x \right) + g\left( x \right)} \right]dx} } \right|.\)
05/11/2021 7 Lượt xem
Câu 3: Cho tích phân \(\int\limits_2^9 {f\left( x \right)dx} = 6\). Tính tích phân \(I = \int\limits_1^2 {{x^2}f\left( {{x^3} + 1} \right)dx} \).
A. I = 3
B. I = 2
C. I = 8
D. I = 4
05/11/2021 6 Lượt xem
Câu 4: Cho đường thẳng \({d_1}:\,\,\left\{ \begin{array}{l}x = 4 - 2t\\y = t\\z = 3\end{array} \right.\,\,\left( {t \in \mathbb{R}} \right)\) và \({d_2}:\,\,\left\{ \begin{array}{l}x = 1\\y = t'\\z = - t'\end{array} \right.\,\,\left( {t' \in \mathbb{R}} \right)\). Phương trình mặt cầu có bán kính nhỏ nhất tiếp xúc với cả hai đường thẳng \(\left( {{d_1}} \right),\,\,\left( {{d_2}} \right)\) là:
A. \({\left( {x + \frac{3}{2}} \right)^2} + {y^2} + {\left( {z + 2} \right)^2} = \frac{9}{4}\)
B. \({\left( {x + \frac{3}{2}} \right)^2} + {y^2} + {\left( {z + 2} \right)^2} = \frac{3}{2}\)
C. \({\left( {x - \frac{3}{2}} \right)^2} + {y^2} + {\left( {z - 2} \right)^2} = \frac{3}{2}\)
D. \({\left( {x - \frac{3}{2}} \right)^2} + {y^2} + {\left( {z - 2} \right)^2} = \frac{9}{4}\)
05/11/2021 7 Lượt xem
Câu 5: Hai số phức \(\frac{3}{2} + \frac{{\sqrt 7 }}{2}i\) và \(\frac{3}{2} - \frac{{\sqrt 7 }}{2}i\) là nghiệm của phương trình nào sau đây?
A. \({z^2} - 3z - 4 = 0\)
B. \({z^2} + 3z + 4 = 0\)
C. \({z^2} - 3z + 4 = 0\)
D. \({z^2} + 3z - 4 = 0\)
05/11/2021 7 Lượt xem
Câu 6: Trong không gian \(Oxyz\), cho mặt phẳng \(\left( P \right):\,\,x + 2y - 2z - 2 = 0\) và điểm \(I\left( {1;2; - 3} \right)\). Bán kính của mặt cầu có tâm \(I\) và tiếp xúc với mặt phẳng \(\left( P \right)\) bằng:
A. 1
B. \(\frac{{11}}{3}\)
C. 3
D. \(\frac{1}{3}\)
05/11/2021 7 Lượt xem

Câu hỏi trong đề: Đề thi thử THPT QG năm 2021 môn Toán của Trường THPT Lê Quý Đôn
- 75 Lượt thi
- 90 Phút
- 50 Câu hỏi
- Học sinh
Cùng danh mục Thi THPT QG Môn Toán
- 1.9K
- 283
- 50
-
58 người đang thi
- 1.0K
- 121
- 50
-
21 người đang thi
- 720
- 35
- 50
-
62 người đang thi
- 618
- 31
- 50
-
93 người đang thi
Chia sẻ:
Đăng Nhập để viết bình luận