Câu hỏi:
Tập nghiệm của bất phương trình \({3^{2x - 1}} > 27\) là
A. \(\left( {\frac{1}{2}; + \infty } \right)\)
B. \(\left( {3; + \infty } \right)\)
C. \(\left( {\frac{1}{3}; + \infty } \right)\)
D. \(\left( {2; + \infty } \right)\)
Câu 1: Cho khối chóp tam giác có đường cao bằng 100 cm và cạnh đáy bằng 20 cm, 21 cm, 29 cm. Tính thể tích khối chóp này.
A. \(7000\sqrt 2 {\rm{ c}}{{\rm{m}}^3}\)
B. \(6000{\rm{ c}}{{\rm{m}}^3}\)
C. \(6213{\rm{ c}}{{\rm{m}}^3}\)
D. \(7000{\rm{ c}}{{\rm{m}}^3}\)
05/11/2021 7 Lượt xem
Câu 2: Cho tích phân \(I = \int\limits_1^e {\frac{{\sqrt {1 + \ln x} }}{x}dx} \). Đổi biến \(t = \sqrt {1 + \ln x} \) ta được kết quả nào sau đây?
A. \(I = \int\limits_1^{\sqrt 2 } {{t^2}dt} \)
B. \(I = 2\int\limits_1^{\sqrt 2 } {{t^2}dt} \)
C. \(I = 2\int\limits_1^2 {{t^2}dt} \)
D. \(I = 2\int\limits_1^{\sqrt 2 } {tdt} \)
05/11/2021 8 Lượt xem
Câu 3: Trong không gian Oxyz, cho \(A\left( { - 2;1;1} \right),{\rm{ }}B\left( {0; - 1;1} \right)\). Phương trình mặt cầu đường kính AB là
A. \({\left( {x + 1} \right)^2} + {y^2} + {\left( {z - 1} \right)^2} = 8\)
B. \({\left( {x + 1} \right)^2} + {y^2} + {\left( {z - 1} \right)^2} = 2\)
C. \({\left( {x + 1} \right)^2} + {y^2} + {\left( {z + 1} \right)^2} = 8\)
D. \({\left( {x - 1} \right)^2} + {y^2} + {\left( {z - 1} \right)^2} = 2\)
05/11/2021 7 Lượt xem
Câu 4: Cho hàm số y = f(x) liên tục trên R và có bảng biến thiên như hình vẽ. Tìm tất cả các giá trị thực của m để phương trình \(\frac{1}{2}f\left( x \right) - m = 0\) có đúng hai nghiệm phân biệt.
6184b979809cc.png)
6184b979809cc.png)
A. \(\left[ \begin{array}{l} m = 0\\ m < - \frac{3}{2} \end{array} \right.\)
B. m < -3
C. \(m < - \frac{3}{2}\)
D. \(\left[ \begin{array}{l} m = 0\\ m < - 3 \end{array} \right.\)
05/11/2021 8 Lượt xem
Câu 5: Tính thể tích khối tròn xoay sinh ra khi quay tam giác đều ABC cạnh bằng 1 quanh AB.
A. \(\frac{{3\pi }}{4}\)
B. \(\frac{{\pi }}{4}\)
C. \(\frac{{\pi }}{8}\)
D. \(\frac{{\pi \sqrt 3 }}{2}\)
05/11/2021 10 Lượt xem
Câu 6: Diện tích hình phẳng được giới hạn bởi đồ thị hàm số \(y = x{e^x}\), trục hoành, hai đường thẳng x = - 2; x = 3 có công thức tính là
A. \(S = \int\limits_{ - 2}^3 {x{e^x}dx} \)
B. \(S = \int\limits_{ - 2}^3 {\left| {x{e^x}} \right|dx} \)
C. \(S = \left| {\int\limits_{ - 2}^3 {x{e^x}dx} } \right|\)
D. \(S = \pi \int\limits_{ - 2}^3 {x{e^x}dx} \)
05/11/2021 8 Lượt xem
Câu hỏi trong đề: Đề thi thử THPT QG năm 2021 môn Toán của Trường THPT Nam Sài Gòn
- 23 Lượt thi
- 90 Phút
- 50 Câu hỏi
- Học sinh
Cùng danh mục Thi THPT QG Môn Toán
- 2.2K
- 286
- 50
-
13 người đang thi
- 1.3K
- 122
- 50
-
59 người đang thi
- 1.2K
- 75
- 50
-
34 người đang thi
- 977
- 35
- 50
-
73 người đang thi
Chia sẻ:
Đăng Nhập để viết bình luận