Câu hỏi:
Tập nghiệm của phương trình \({2^{{x^2} - 3x}} = \frac{1}{4}\) là
A. S = Ø
B. S = {1;2}
C. S = {0}
D. S = {1}
05/11/2021 8 Lượt xem
Câu 2: Tập nghiệm của bất phương trình \({3^{2x - 1}} > 27\) là
A. \(\left( {\frac{1}{2}; + \infty } \right)\)
B. \(\left( {3; + \infty } \right)\)
C. \(\left( {\frac{1}{3}; + \infty } \right)\)
D. \(\left( {2; + \infty } \right)\)
05/11/2021 8 Lượt xem
Câu 3: Cho hàm số y = f(x) có bảng biến thiên dưới đây. Khẳng định nào sau đây sai?
A. Hàm số nghịch biến trên khoảng \(\left( { - \infty ; - 1} \right)\)
B. Hàm số nghịch biến trên khoảng (0;1)
C. Hàm số đồng biến trên khoảng \(\left( {2; + \infty } \right)\)
D. Hàm số nghịch biến trên khoảng \(\left( { - 2; + \infty } \right)\)
05/11/2021 9 Lượt xem
Câu 4: Cho hàm số y = f(x) có đạo hàm liên tục trên đoạn [0;1] và thỏa mãn f(0) = 0. Biết \(\int\limits_0^1 {{f^2}\left( x \right)dx} = \frac{9}{2}\) và \(\int\limits_0^1 {f'\left( x \right)\cos \frac{{\pi x}}{2}dx} = \frac{{3\pi }}{4}\). Tích phân \(\int\limits_0^1 {f\left( x \right)dx} \) bằng.
A. \(\frac{6}{\pi }\)
B. \(\frac{2}{\pi }\)
C. \(\frac{4}{\pi }\)
D. \(\frac{1}{\pi }\)
05/11/2021 7 Lượt xem
Câu 5: Cho hàm số y = f(x) xác định, liên tục trên R và có bảng biến thiên như sau:
Tìm giá trị cực đại yCĐ và giá trị cực tiểu yCT của hàm số đã cho
A. yCĐ = -2 và yCT = 2
B. yCĐ = 3 và yCT = 0
C. yCĐ = 2 và yCT = 0
D. yCĐ = 3 và yCT = -2
05/11/2021 8 Lượt xem
Câu 6: Đường cong ở hình vẽ bên là đồ thị của hàm số nào dưới đây
A. \(y = - {x^3} + 3x + 1\)
B. \(y = \frac{{x + 1}}{{x - 1}}\)
C. \(y = \frac{{x - 1}}{{x + 1}}\)
D. \(y = {x^3} - 3{x^2} - 1\)
05/11/2021 7 Lượt xem
Câu hỏi trong đề: Đề thi thử THPT QG năm 2021 môn Toán của Trường THPT Nam Sài Gòn
- 23 Lượt thi
- 90 Phút
- 50 Câu hỏi
- Học sinh
Chia sẻ:
Đăng Nhập để viết bình luận