Câu hỏi:
Cho hàm số y = f(x) có bảng biến thiên dưới đây. Khẳng định nào sau đây sai?
6184b978a4d6a.png)
A. Hàm số nghịch biến trên khoảng \(\left( { - \infty ; - 1} \right)\)
B. Hàm số nghịch biến trên khoảng (0;1)
C. Hàm số đồng biến trên khoảng \(\left( {2; + \infty } \right)\)
D. Hàm số nghịch biến trên khoảng \(\left( { - 2; + \infty } \right)\)
Câu 1: Cho hàm số y = f(x) xác định, liên tục trên R và có bảng biến thiên như sau:
6184b978cc5c5.png)
Tìm giá trị cực đại yCĐ và giá trị cực tiểu yCT của hàm số đã cho
6184b978cc5c5.png)
A. yCĐ = -2 và yCT = 2
B. yCĐ = 3 và yCT = 0
C. yCĐ = 2 và yCT = 0
D. yCĐ = 3 và yCT = -2
05/11/2021 8 Lượt xem
Câu 2: Cho hình hộp chữ nhật ABCD.A'B'C'D'. Gọi M là trung điểm của BB'. Mặt phẳng (MDC') chia khối hộp chữ nhật thành hai khối đa diện, một khối chứa đỉnh C và một khối chứa đỉnh A'. Gọi V1, V2 lần lượt là thể tích của hai khối đa diện chứa C và A'. Tính \(\frac{{{V_1}}}{{{V_2}}}.\)
A. \(\frac{{{V_1}}}{{{V_2}}} = \frac{7}{{24}}\)
B. \(\frac{{{V_1}}}{{{V_2}}} = \frac{7}{{17}}\)
C. \(\frac{{{V_1}}}{{{V_2}}} = \frac{7}{{12}}\)
D. \(\frac{{{V_1}}}{{{V_2}}} = \frac{17}{{24}}\)
05/11/2021 7 Lượt xem
Câu 3: Tìm đường tiệm cận ngang của đồ thị hàm số \(y = \frac{{2 - 2x}}{{x + 1}}\)
A. y = -2
B. x = -1
C. x = -2
D. y = 2
05/11/2021 8 Lượt xem
Câu 4: Diện tích hình phẳng được giới hạn bởi đồ thị hàm số \(y = x{e^x}\), trục hoành, hai đường thẳng x = - 2; x = 3 có công thức tính là
A. \(S = \int\limits_{ - 2}^3 {x{e^x}dx} \)
B. \(S = \int\limits_{ - 2}^3 {\left| {x{e^x}} \right|dx} \)
C. \(S = \left| {\int\limits_{ - 2}^3 {x{e^x}dx} } \right|\)
D. \(S = \pi \int\limits_{ - 2}^3 {x{e^x}dx} \)
05/11/2021 8 Lượt xem
Câu 5: Cho hình lập phương ABCD.A'B'C'D'. Góc giữa hai đường thẳng B'A và CD bằng
A. 90o
B. 60o
C. 30o
D. 45o
05/11/2021 7 Lượt xem
Câu 6: Trong không gian Oxyz, cho mặt phẳng \(\left( P \right):x + y - 2z + 4 = 0\). Một vec-tơ pháp tuyến của mặt phẳng (P) là
A. \(\overrightarrow n = \left( {1;1; - 2} \right)\)
B. \(\overrightarrow n = \left( {1;0; - 2} \right)\)
C. \(\overrightarrow n = \left( {1; - 2;4} \right)\)
D. \(\overrightarrow n = \left( {1; - 1;2} \right)\)
05/11/2021 8 Lượt xem
Câu hỏi trong đề: Đề thi thử THPT QG năm 2021 môn Toán của Trường THPT Nam Sài Gòn
- 23 Lượt thi
- 90 Phút
- 50 Câu hỏi
- Học sinh
Cùng danh mục Thi THPT QG Môn Toán
- 2.2K
- 287
- 50
-
53 người đang thi
- 1.4K
- 122
- 50
-
13 người đang thi
- 1.2K
- 75
- 50
-
88 người đang thi
- 1.0K
- 35
- 50
-
57 người đang thi
Chia sẻ:
Đăng Nhập để viết bình luận