Câu hỏi:

Gọi N(t) là số phần trăm cacbon 14 còn lại trong một bộ phận của một cây sinh trưởng từ t năm trước đây thì ta có công thức \(N\left( t \right) = 100.{\left( {0,5} \right)^{\frac{t}{A}}}{\rm{ }}\left( \% \right)\) với A là hằng số. Biết rằng một mẫu gỗ có tuổi khoảng 3754 năm thì lượng cácbon 14 còn lại là 65%. Phân tích mẫu gỗ từ một công trình kiến trúc cổ, người ta thấy lượng cácbon 14 còn lại trong mẫu gỗ là 63%. Hãy xác định tuổi của mẫu gỗ được lấy từ công trình đó

381 Lượt xem
05/11/2021
3.3 9 Đánh giá

A. 3874

B. 3833

C. 3834

D. 3843

Đăng Nhập để xem đáp án
Câu hỏi khác cùng đề thi
Câu 2:

Tìm phần thực và phần ảo của số phức liên hợp của số phức z = 1 + i.

A. Phần thực là 1, phần ảo là -1

B. Phần thực là 1, phần ảo là -i.

C. Phần thực là 1, phần ảo là 1.

D. Phần thực là 1, phần ảo là i.

Xem đáp án

05/11/2021 8 Lượt xem

Câu 4:

Trong không gian Oxyz, cho hai điểm A(1;2;3) và B(2;4;-1). Phương trình chính tắc của đường thẳng d đi qua A, B là

A. \(\frac{{x + 2}}{1} = \frac{{y + 4}}{2} = \frac{{z + 1}}{4}\)

B. \(\frac{{x + 1}}{1} = \frac{{y + 2}}{2} = \frac{{z + 3}}{4}\)

C. \(\frac{{x - 1}}{1} = \frac{{y - 2}}{2} = \frac{{z - 3}}{{ - 4}}\)

D. \(\frac{{x + 2}}{1} = \frac{{y + 4}}{2} = \frac{{z - 1}}{{ - 4}}\)

Xem đáp án

05/11/2021 9 Lượt xem

Câu 6:

Trong không gian Oxyz, cho \(A\left( { - 2;1;1} \right),{\rm{ }}B\left( {0; - 1;1} \right)\). Phương trình mặt cầu đường kính AB là

A. \({\left( {x + 1} \right)^2} + {y^2} + {\left( {z - 1} \right)^2} = 8\)

B. \({\left( {x + 1} \right)^2} + {y^2} + {\left( {z - 1} \right)^2} = 2\)

C. \({\left( {x + 1} \right)^2} + {y^2} + {\left( {z + 1} \right)^2} = 8\)

D. \({\left( {x - 1} \right)^2} + {y^2} + {\left( {z - 1} \right)^2} = 2\)

Xem đáp án

05/11/2021 7 Lượt xem

Chưa có bình luận

Đăng Nhập để viết bình luận

Đề thi thử THPT QG năm 2021 môn Toán của Trường THPT Nam Sài Gòn
Thông tin thêm
  • 23 Lượt thi
  • 90 Phút
  • 50 Câu hỏi
  • Học sinh