Câu hỏi:

Cho hình hộp chữ nhật ABCD.A'B'C'D'. Gọi M là trung điểm của BB'. Mặt phẳng (MDC') chia khối hộp chữ nhật thành hai khối đa diện, một khối chứa đỉnh C và một khối chứa đỉnh A'. Gọi V1, V2 lần lượt là thể tích của hai khối đa diện chứa C và A'. Tính \(\frac{{{V_1}}}{{{V_2}}}.\) 

367 Lượt xem
05/11/2021
3.2 5 Đánh giá

A. \(\frac{{{V_1}}}{{{V_2}}} = \frac{7}{{24}}\)

B. \(\frac{{{V_1}}}{{{V_2}}} = \frac{7}{{17}}\)

C. \(\frac{{{V_1}}}{{{V_2}}} = \frac{7}{{12}}\)

D. \(\frac{{{V_1}}}{{{V_2}}} = \frac{17}{{24}}\)

Đăng Nhập để xem đáp án
Câu hỏi khác cùng đề thi
Câu 3:

Tìm phần thực và phần ảo của số phức liên hợp của số phức z = 1 + i.

A. Phần thực là 1, phần ảo là -1

B. Phần thực là 1, phần ảo là -i.

C. Phần thực là 1, phần ảo là 1.

D. Phần thực là 1, phần ảo là i.

Xem đáp án

05/11/2021 8 Lượt xem

Câu 4:

Tập nghiệm của bất phương trình \({3^{2x - 1}} > 27\) là

A. \(\left( {\frac{1}{2}; + \infty } \right)\)

B. \(\left( {3; + \infty } \right)\)

C. \(\left( {\frac{1}{3}; + \infty } \right)\)

D. \(\left( {2; + \infty } \right)\)

Xem đáp án

05/11/2021 8 Lượt xem

Câu 5:

Trong không gian Oxyz, cho hai điểm A(1;2;3) và B(2;4;-1). Phương trình chính tắc của đường thẳng d đi qua A, B là

A. \(\frac{{x + 2}}{1} = \frac{{y + 4}}{2} = \frac{{z + 1}}{4}\)

B. \(\frac{{x + 1}}{1} = \frac{{y + 2}}{2} = \frac{{z + 3}}{4}\)

C. \(\frac{{x - 1}}{1} = \frac{{y - 2}}{2} = \frac{{z - 3}}{{ - 4}}\)

D. \(\frac{{x + 2}}{1} = \frac{{y + 4}}{2} = \frac{{z - 1}}{{ - 4}}\)

Xem đáp án

05/11/2021 9 Lượt xem

Câu 6:

Trong không gian Oxyz, cho \(A\left( { - 2;1;1} \right),{\rm{ }}B\left( {0; - 1;1} \right)\). Phương trình mặt cầu đường kính AB là

A. \({\left( {x + 1} \right)^2} + {y^2} + {\left( {z - 1} \right)^2} = 8\)

B. \({\left( {x + 1} \right)^2} + {y^2} + {\left( {z - 1} \right)^2} = 2\)

C. \({\left( {x + 1} \right)^2} + {y^2} + {\left( {z + 1} \right)^2} = 8\)

D. \({\left( {x - 1} \right)^2} + {y^2} + {\left( {z - 1} \right)^2} = 2\)

Xem đáp án

05/11/2021 7 Lượt xem

Chưa có bình luận

Đăng Nhập để viết bình luận

Đề thi thử THPT QG năm 2021 môn Toán của Trường THPT Nam Sài Gòn
Thông tin thêm
  • 23 Lượt thi
  • 90 Phút
  • 50 Câu hỏi
  • Học sinh