Câu hỏi:

Cho hình hộp chữ nhật ABCD.A'B'C'D'. Gọi M là trung điểm của BB'. Mặt phẳng (MDC') chia khối hộp chữ nhật thành hai khối đa diện, một khối chứa đỉnh C và một khối chứa đỉnh A'. Gọi V1, V2 lần lượt là thể tích của hai khối đa diện chứa C và A'. Tính \(\frac{{{V_1}}}{{{V_2}}}.\) 

407 Lượt xem
05/11/2021
3.2 5 Đánh giá

A. \(\frac{{{V_1}}}{{{V_2}}} = \frac{7}{{24}}\)

B. \(\frac{{{V_1}}}{{{V_2}}} = \frac{7}{{17}}\)

C. \(\frac{{{V_1}}}{{{V_2}}} = \frac{7}{{12}}\)

D. \(\frac{{{V_1}}}{{{V_2}}} = \frac{17}{{24}}\)

Đăng Nhập để xem đáp án
Câu hỏi khác cùng đề thi
Câu 1:

Cho tích phân \(I = \int\limits_1^e {\frac{{\sqrt {1 + \ln x} }}{x}dx} \). Đổi biến \(t = \sqrt {1 + \ln x} \) ta được kết quả nào sau đây?

A. \(I = \int\limits_1^{\sqrt 2 } {{t^2}dt} \)

B. \(I = 2\int\limits_1^{\sqrt 2 } {{t^2}dt} \)

C. \(I = 2\int\limits_1^2 {{t^2}dt} \)

D. \(I = 2\int\limits_1^{\sqrt 2 } {tdt} \)

Xem đáp án

05/11/2021 8 Lượt xem

Câu 3:

Trong không gian Oxyz, cho \(A\left( { - 2;1;1} \right),{\rm{ }}B\left( {0; - 1;1} \right)\). Phương trình mặt cầu đường kính AB là

A. \({\left( {x + 1} \right)^2} + {y^2} + {\left( {z - 1} \right)^2} = 8\)

B. \({\left( {x + 1} \right)^2} + {y^2} + {\left( {z - 1} \right)^2} = 2\)

C. \({\left( {x + 1} \right)^2} + {y^2} + {\left( {z + 1} \right)^2} = 8\)

D. \({\left( {x - 1} \right)^2} + {y^2} + {\left( {z - 1} \right)^2} = 2\)

Xem đáp án

05/11/2021 7 Lượt xem

Câu 4:

Tìm tập xác định của hàm số \(y = {\log _{\frac{1}{2}}}\left( {{x^2} - 3x + 2} \right)\)

A. \(\left( { - \infty ;1} \right) \cup \left( {2; + \infty } \right)\)

B. (1;2)

C. \(\left( {2; + \infty } \right)\)

D. \(\left( { - \infty ;1} \right)\)

Xem đáp án

05/11/2021 8 Lượt xem

Câu 6:

Tính thể tích khối tròn xoay sinh ra khi quay tam giác đều ABC cạnh bằng 1 quanh AB.

A. \(\frac{{3\pi }}{4}\)

B. \(\frac{{\pi }}{4}\)

C. \(\frac{{\pi }}{8}\)

D. \(\frac{{\pi \sqrt 3 }}{2}\)

Xem đáp án

05/11/2021 10 Lượt xem

Chưa có bình luận

Đăng Nhập để viết bình luận

Đề thi thử THPT QG năm 2021 môn Toán của Trường THPT Nam Sài Gòn
Thông tin thêm
  • 23 Lượt thi
  • 90 Phút
  • 50 Câu hỏi
  • Học sinh