Câu hỏi:
Cho hàm số y = f(x) liên tục trên R và có bảng biến thiên như hình vẽ. Tìm tất cả các giá trị thực của m để phương trình \(\frac{1}{2}f\left( x \right) - m = 0\) có đúng hai nghiệm phân biệt.
A. \(\left[ \begin{array}{l} m = 0\\ m < - \frac{3}{2} \end{array} \right.\)
B. m < -3
C. \(m < - \frac{3}{2}\)
D. \(\left[ \begin{array}{l} m = 0\\ m < - 3 \end{array} \right.\)
Câu 1: Tìm tất cả các giá trị thực của tham số a > 0 thỏa mãn \({\left( {{2^a} + \frac{1}{{{2^a}}}} \right)^{2017}} \le {\left( {{2^{2017}} + \frac{1}{{{2^{2017}}}}} \right)^a}.\)
A. 0 < a < 1
B. 1 < a < 2017
C. \(0 < a \le 2017\)
D. \(a \ge 2017\)
05/11/2021 8 Lượt xem
Câu 2: Hình lập phương có đường chéo của mặt bên bằng 4 cm. Tính thể tích khối lập phương đó.
A. \(8\sqrt 2 {\rm{ c}}{{\rm{m}}^{\rm{3}}}\)
B. \(16\sqrt 2 {\rm{ c}}{{\rm{m}}^{\rm{3}}}\)
C. \(8{\rm{ c}}{{\rm{m}}^{\rm{3}}}\)
D. \(2\sqrt 2 {\rm{ c}}{{\rm{m}}^{\rm{3}}}\)
05/11/2021 7 Lượt xem
05/11/2021 8 Lượt xem
Câu 4: Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a, cạnh bên \(SA \bot \left( {ABCD} \right)\) và \(SA = a\sqrt 3 \). Khoảng cách từ A đến mặt phẳng (SBC) bằng
A. \(\frac{{2a\sqrt 5 }}{5}\)
B. \(a\sqrt 3 \)
C. \(\frac{a}{2}\)
D. \(\frac{{a\sqrt 3 }}{2}\)
05/11/2021 7 Lượt xem
Câu 5: Cho hàm số f(x) có đồ thị như hình vẽ. Số nghiệm của phương trình \(2f\left( x \right) - 3 = 0\) là
6184b9792a491.png)
6184b9792a491.png)
A. 3
B. 1
C. 2
D. 0
05/11/2021 8 Lượt xem
Câu 6: Nếu \(\int\limits_1^5 {\frac{{dx}}{{2x - 1}} = \ln c} \) với \(c \in Q\) thì giá trị của c bằng
A. 9
B. 3
C. 6
D. 81
05/11/2021 8 Lượt xem

Câu hỏi trong đề: Đề thi thử THPT QG năm 2021 môn Toán của Trường THPT Nam Sài Gòn
- 23 Lượt thi
- 90 Phút
- 50 Câu hỏi
- Học sinh
Cùng danh mục Thi THPT QG Môn Toán
- 1.9K
- 283
- 50
-
95 người đang thi
- 1.1K
- 122
- 50
-
38 người đang thi
- 923
- 75
- 50
-
55 người đang thi
- 735
- 35
- 50
-
46 người đang thi
Chia sẻ:
Đăng Nhập để viết bình luận