Câu hỏi:

Cho hàm số y = f(x) có đạo hàm liên tục trên đoạn [0;1] và thỏa mãn f(0) = 0. Biết \(\int\limits_0^1 {{f^2}\left( x \right)dx} = \frac{9}{2}\) và \(\int\limits_0^1 {f'\left( x \right)\cos \frac{{\pi x}}{2}dx} = \frac{{3\pi }}{4}\). Tích phân \(\int\limits_0^1 {f\left( x \right)dx} \) bằng.

463 Lượt xem
05/11/2021
3.5 8 Đánh giá

A. \(\frac{6}{\pi }\)

B. \(\frac{2}{\pi }\)

C. \(\frac{4}{\pi }\)

D. \(\frac{1}{\pi }\)

Đăng Nhập để xem đáp án
Câu hỏi khác cùng đề thi
Câu 1:

Diện tích hình phẳng được giới hạn bởi đồ thị hàm số \(y = x{e^x}\), trục hoành, hai đường thẳng x =  - 2; x = 3 có công thức tính là

A. \(S = \int\limits_{ - 2}^3 {x{e^x}dx} \)

B. \(S = \int\limits_{ - 2}^3 {\left| {x{e^x}} \right|dx} \)

C. \(S = \left| {\int\limits_{ - 2}^3 {x{e^x}dx} } \right|\)

D. \(S = \pi \int\limits_{ - 2}^3 {x{e^x}dx} \)

Xem đáp án

05/11/2021 8 Lượt xem

Câu 2:

Cho hàm số y = f(x) có bảng biến thiên dưới đây. Khẳng định nào sau đây sai?

A. Hàm số nghịch biến trên khoảng \(\left( { - \infty ; - 1} \right)\)

B. Hàm số nghịch biến trên khoảng (0;1)

C. Hàm số đồng biến trên khoảng \(\left( {2; + \infty } \right)\)

D. Hàm số nghịch biến trên khoảng \(\left( { - 2; + \infty } \right)\)

Xem đáp án

05/11/2021 9 Lượt xem

Xem đáp án

05/11/2021 9 Lượt xem

Câu 4:

Cho hàm số y = f(x) liên tục trên R và có bảng biến thiên như hình vẽ. Tìm tất cả các giá trị thực của m để phương trình \(\frac{1}{2}f\left( x \right) - m = 0\) có đúng hai nghiệm phân biệt.

A. \(\left[ \begin{array}{l} m = 0\\ m < - \frac{3}{2} \end{array} \right.\)

B. m < -3

C. \(m <  - \frac{3}{2}\)

D. \(\left[ \begin{array}{l} m = 0\\ m < - 3 \end{array} \right.\)

Xem đáp án

05/11/2021 8 Lượt xem

Chưa có bình luận

Đăng Nhập để viết bình luận

Đề thi thử THPT QG năm 2021 môn Toán của Trường THPT Nam Sài Gòn
Thông tin thêm
  • 23 Lượt thi
  • 90 Phút
  • 50 Câu hỏi
  • Học sinh