Câu hỏi:
Cho hàm số y = f(x) có đạo hàm liên tục trên đoạn [0;1] và thỏa mãn f(0) = 0. Biết \(\int\limits_0^1 {{f^2}\left( x \right)dx} = \frac{9}{2}\) và \(\int\limits_0^1 {f'\left( x \right)\cos \frac{{\pi x}}{2}dx} = \frac{{3\pi }}{4}\). Tích phân \(\int\limits_0^1 {f\left( x \right)dx} \) bằng.
A. \(\frac{6}{\pi }\)
B. \(\frac{2}{\pi }\)
C. \(\frac{4}{\pi }\)
D. \(\frac{1}{\pi }\)
Câu 1: Diện tích hình phẳng được giới hạn bởi đồ thị hàm số \(y = x{e^x}\), trục hoành, hai đường thẳng x = - 2; x = 3 có công thức tính là
A. \(S = \int\limits_{ - 2}^3 {x{e^x}dx} \)
B. \(S = \int\limits_{ - 2}^3 {\left| {x{e^x}} \right|dx} \)
C. \(S = \left| {\int\limits_{ - 2}^3 {x{e^x}dx} } \right|\)
D. \(S = \pi \int\limits_{ - 2}^3 {x{e^x}dx} \)
05/11/2021 8 Lượt xem
Câu 2: Cho hàm số y = f(x) có bảng biến thiên dưới đây. Khẳng định nào sau đây sai?
6184b978a4d6a.png)
6184b978a4d6a.png)
A. Hàm số nghịch biến trên khoảng \(\left( { - \infty ; - 1} \right)\)
B. Hàm số nghịch biến trên khoảng (0;1)
C. Hàm số đồng biến trên khoảng \(\left( {2; + \infty } \right)\)
D. Hàm số nghịch biến trên khoảng \(\left( { - 2; + \infty } \right)\)
05/11/2021 9 Lượt xem
Câu 3: Tập nghiệm của phương trình \({2^{{x^2} - 3x}} = \frac{1}{4}\) là
A. S = Ø
B. S = {1;2}
C. S = {0}
D. S = {1}
05/11/2021 9 Lượt xem
Câu 4: Cho hàm số y = f(x) liên tục trên R và có bảng biến thiên như hình vẽ. Tìm tất cả các giá trị thực của m để phương trình \(\frac{1}{2}f\left( x \right) - m = 0\) có đúng hai nghiệm phân biệt.
6184b979809cc.png)
6184b979809cc.png)
A. \(\left[ \begin{array}{l} m = 0\\ m < - \frac{3}{2} \end{array} \right.\)
B. m < -3
C. \(m < - \frac{3}{2}\)
D. \(\left[ \begin{array}{l} m = 0\\ m < - 3 \end{array} \right.\)
05/11/2021 8 Lượt xem
Câu 5: Trong không gian Oxyz, cho đường thẳng \(d:\frac{{x - 1}}{2} = \frac{{y - 2}}{1} = \frac{z}{{ - 2}}\). Điểm nào dưới đây thuộc đường thẳng d?
A. M(-1;-2;0)
B. M(-1;1;2)
C. M(2;1;-2)
D. M(3;3;2)
05/11/2021 8 Lượt xem
Câu 6: Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a, cạnh bên \(SA \bot \left( {ABCD} \right)\) và \(SA = a\sqrt 3 \). Khoảng cách từ A đến mặt phẳng (SBC) bằng
A. \(\frac{{2a\sqrt 5 }}{5}\)
B. \(a\sqrt 3 \)
C. \(\frac{a}{2}\)
D. \(\frac{{a\sqrt 3 }}{2}\)
05/11/2021 7 Lượt xem

Câu hỏi trong đề: Đề thi thử THPT QG năm 2021 môn Toán của Trường THPT Nam Sài Gòn
- 23 Lượt thi
- 90 Phút
- 50 Câu hỏi
- Học sinh
Cùng danh mục Thi THPT QG Môn Toán
- 2.0K
- 284
- 50
-
66 người đang thi
- 1.2K
- 122
- 50
-
93 người đang thi
- 1.0K
- 75
- 50
-
85 người đang thi
- 846
- 35
- 50
-
62 người đang thi
Chia sẻ:
Đăng Nhập để viết bình luận