Câu hỏi:
Số phức \(z\) thỏa mãn \(z + 2\overline z = {\left( {1 + 5i} \right)^2}\) có phần ảo là:
A. -8
B. -8i
C. -10
D. -10i
Câu 1: Trong không gian với hệ tọa độ Oxyz, bán kính của mặt cầu đi qua bốn điểm \(O\left( {0;0;0} \right);\) \(A\left( {4;0;0} \right);\) \(B\left( {0;4;0} \right);\) \(C\left( {0;0;4} \right)\) là:
A. \(R = 3\sqrt 3 \)
B. \(R = 4\sqrt 3 \)
C. \(R = \sqrt 3 \)
D. \(R = 2\sqrt 3 \)
05/11/2021 8 Lượt xem
Câu 2: Trong không gian với hệ tọa độ \(Oxyz\), cho điểm \(M\left( {5;3;2} \right)\) và đường thẳng\(\left( d \right):\frac{{x - 1}}{1} = \frac{{y + 3}}{2} = \frac{{z + 2}}{3}\). Tọa độ điểm \(H\) là hình chiếu vuông góc của \(M\) trên \(\left( d \right)\) là:
A. \(H\left( {1; - 3; - 2} \right)\)
B. \(H\left( {3;1;4} \right)\)
C. \(H\left( {2; - 1;1} \right)\)
D. \(H\left( {4;3;7} \right)\)
05/11/2021 9 Lượt xem
Câu 3: Trong không gian với hệ tọa độ \(Oxyz\), phương trình mặt phẳng trung trực của đoạn thẳng \(AB\) biết \(A\left( {2;1;4} \right);\) \(B\left( { - 1; - 3; - 5} \right)\) là:
A. \(3x + 4y + 9z + 7 = 0.\)
B. \( - 3x - 4y - 9z + 7 = 0.\)
C. \(3x + 4y + 9z = 0.\)
D. \( - 3x - 4y - 9z + 5 = 0.\)
05/11/2021 7 Lượt xem
05/11/2021 8 Lượt xem
Câu 5: Trong không gian với hệ tọa độ \(Oxyz\) cho mặt cầu có phương trình : \(\left( {{S_m}} \right):{x^2} + {y^2} + {z^2} \)\(- 4mx + 4y + 2mz + {m^2} + 4m = 0.\)
\(\left( {{S_m}} \right)\) là mặt cầu có bán kính nhỏ nhất khi \(m\) là:
A. m = 0
B. \(m = \frac{1}{2}.\)
C. m = -1
D. \(m = - \frac{3}{2}.\)
05/11/2021 7 Lượt xem
Câu 6: Nguyên hàm của hàm số \(y = \cot x\) là:
A. \(\ln \left| {\cos x} \right| + C\)
B. \(\ln \left| {\sin x} \right| + C\)
C. \(\sin x + C\)
D. \(\tan x + C\)
05/11/2021 9 Lượt xem

Câu hỏi trong đề: Đề thi thử THPT QG năm 2021 môn Toán của Trường THPT Lý Thái Tổ
- 28 Lượt thi
- 90 Phút
- 50 Câu hỏi
- Học sinh
Cùng danh mục Thi THPT QG Môn Toán
- 1.8K
- 283
- 50
-
69 người đang thi
- 1.0K
- 121
- 50
-
29 người đang thi
- 899
- 75
- 50
-
70 người đang thi
- 714
- 35
- 50
-
19 người đang thi
Chia sẻ:
Đăng Nhập để viết bình luận