Câu hỏi:

Cho số phức \(z\)  thỏa mãn \(\left| {z + i - 1} \right| = \left| {\overline z  - 2i} \right|\). Giá trị nhỏ nhất \(\left| z \right|\) là:

236 Lượt xem
05/11/2021
3.3 10 Đánh giá

A. \(\sqrt 2 \)

B. \(2\sqrt 2 \)

C. \(\frac{{\sqrt 2 }}{2}\)

D. \(\frac{{\sqrt 3 }}{2}\)

Đăng Nhập để xem đáp án
Câu hỏi khác cùng đề thi
Xem đáp án

05/11/2021 9 Lượt xem

Câu 3:

Nguyên hàm của hàm số \(y = x\cos x\) là:

A. \(x\cos x - \sin x + C.\)

B. \(x\cos x + \sin x + C.\)

C. \(x\sin x + c{\rm{os}}x + C.\)

D. \(x\sin x - c{\rm{os}}x + C.\)

Xem đáp án

05/11/2021 7 Lượt xem

Câu 4:

Rút gọn biểu thức \(M = {i^{2018}} + {i^{2019}}\) ta được:

A. M = 1 + i

B. M = -1 + i

C. M = 1 - i

D. M =  - 1 - i

Xem đáp án

05/11/2021 8 Lượt xem

Câu 6:

Trong không gian với hệ tọa độ \(Oxyz\), cho điểm \(A\left( {2; - 1;0} \right)\) và mặt phẳng \(\left( P \right):x - 2y + z + 2 = 0\). Gọi \(I\) là hình chiếu vuông góc của \(A\) lên mặt phẳng \(\left( P \right)\). Phương trình của mặt cầu tâm \(I\) và đi qua \(A\) là:

A. \({\left( {x + 1} \right)^2} + {\left( {y + 1} \right)^2} + {\left( {z + 1} \right)^2} = 6.\)

B. \({\left( {x + 1} \right)^2} + {\left( {y - 1} \right)^2} + {\left( {z + 1} \right)^2} = 6.\)

C. \({\left( {x - 1} \right)^2} + {\left( {y - 1} \right)^2} + {\left( {z + 1} \right)^2} = 6.\)

D. \({\left( {x + 1} \right)^2} + {\left( {y + 1} \right)^2} + {\left( {z - 1} \right)^2} = 6.\)

Xem đáp án

05/11/2021 9 Lượt xem

Chưa có bình luận

Đăng Nhập để viết bình luận

Đề thi thử THPT QG năm 2021 môn Toán của Trường THPT Lý Thái Tổ
Thông tin thêm
  • 28 Lượt thi
  • 90 Phút
  • 50 Câu hỏi
  • Học sinh