Câu hỏi:
Số lượng của một loài vi khuẩn sau t (giờ) được xấp xỉ bằng đẳng thức \(Q = {Q_0}.{e^{0,195t}},\) trong đó Q0 là số lượng vi khuẩn ban đầu. Nếu số lượng vi khuẩn ban đầu là 5000 con thì sau bao lâu số lượng vi khuẩn là 100000 con.
A. 15,36 giờ
B. 3,55 giờ
C. 16,35 giờ
D. 20 giờ
05/11/2021 6 Lượt xem
05/11/2021 6 Lượt xem
Câu 3: Có bao nhiêu giá trị nguyên của tham số m sao cho hàm số \(f(x) = - \frac{1}{3}{x^3} + m{x^2} - 9x - 3\) nghịch biến trên R?
A. 7
B. 6
C. 5
D. 2
05/11/2021 7 Lượt xem
Câu 4: Cho a là số thực dương tùy ý, \(\ln \frac{{\rm{e}}}{{{a^2}}}\) bằng
A. \(2\left( {1 + \ln a} \right)\)
B. \(1 - \frac{1}{2}\ln a\)
C. \(2\left( {1 - \ln a} \right)\)
D. \(1 - 2\ln a\)
05/11/2021 8 Lượt xem
Câu 5: Cho hàm số f(x)>0 có đạo hàm liên tục trên \(\left[0, \frac{\pi}{3}\right]\) , đồng thời thỏa mãn \(f^{\prime}(0)=0 ; f(0)=1 \text { và } f^{\prime \prime}(x) \cdot f(x)+\left[\frac{f(x)}{\cos x}\right]^{2}=\left[f^{\prime}(x)\right]^{2}\). Tính \(T=f\left(\frac{\pi}{3}\right)\)
A. \(T=\frac{3}{4}\)
B. \(T=-\frac{\sqrt{3}}{2}\)
C. \( T=\frac{1}{2}\)
D. \(T=\frac{\sqrt{3}}{14}\)
05/11/2021 6 Lượt xem
Câu 6: Đường thẳng nào dưới đây là tiệm cận ngang của đồ thị hàm số \(y = 10 + \frac{1}{{x - 10}}\)?
A. y = 0
B. x = 0
C. y = 10
D. x = 10
05/11/2021 6 Lượt xem

- 285 Lượt thi
- 90 Phút
- 50 Câu hỏi
- Học sinh
Cùng danh mục Thi THPT QG Môn Toán
- 1.3K
- 122
- 50
-
95 người đang thi
- 1.1K
- 75
- 50
-
87 người đang thi
- 939
- 35
- 50
-
90 người đang thi
- 825
- 31
- 50
-
23 người đang thi
Chia sẻ:
Đăng Nhập để viết bình luận