Câu hỏi:
Cho điểm A(1;2;3) và đường thẳng \(d:\frac{{x + 1}}{1} = \frac{y}{{ - 2}} = \frac{{z - 1}}{3} \cdot \) Viết phương trình đường thẳng \(\Delta\) đi qua A vuông góc và cắt d.
A. \(\frac{{x - 1}}{6} = \frac{{y - 2}}{9} = \frac{{z - 3}}{4}\)
B. \(\frac{{x - 1}}{{23}} = \frac{{y - 2}}{{ - 19}} = \frac{{z - 3}}{{13}}\)
C. \(\frac{{x - 1}}{{23}} = \frac{{y - 2}}{{19}} = \frac{{z - 3}}{{ - 13}}\)
D. \(\frac{{x + 1}}{{23}} = \frac{{y + 2}}{{19}} = \frac{{z + 3}}{{13}}\)
Câu 1: Cho hàm số \(y = a{x^3} + b{x^2} + cx + d\). Hỏi hàm số luôn đồng biến trên R khi nào?
A. \(\left[ \begin{array}{l} a = b = 0,c > 0\\ a > 0;{b^2} - 3ac \le 0 \end{array} \right.\)
B. \(\left[ \begin{array}{l} a = b = 0,c > 0\\ a > 0;{b^2} - 3ac \ge 0 \end{array} \right.\)
C. \(\left[ \begin{array}{l} a = b = 0,c > 0\\ a < 0;{b^2} - 3ac \le 0 \end{array} \right.\)
D. \(\left[ \begin{array}{l} a = b = c = 0\\ a < 0;{b^2} - 3ac < 0 \end{array} \right.\)
05/11/2021 6 Lượt xem
Câu 2: Số lượng của một loài vi khuẩn sau t (giờ) được xấp xỉ bằng đẳng thức \(Q = {Q_0}.{e^{0,195t}},\) trong đó Q0 là số lượng vi khuẩn ban đầu. Nếu số lượng vi khuẩn ban đầu là 5000 con thì sau bao lâu số lượng vi khuẩn là 100000 con.
A. 15,36 giờ
B. 3,55 giờ
C. 16,35 giờ
D. 20 giờ
05/11/2021 8 Lượt xem
Câu 3: Cho khối cầu có bán kính R = 2. Thể tích của khối cầu đã cho là
A. \(\frac{{32\pi }}{3}\)
B. \(256\pi \)
C. \(64\pi \)
D. \(16\pi \)
05/11/2021 6 Lượt xem
05/11/2021 5 Lượt xem
Câu 5: Đường thẳng nào dưới đây là tiệm cận ngang của đồ thị hàm số \(y = 10 + \frac{1}{{x - 10}}\)?
A. y = 0
B. x = 0
C. y = 10
D. x = 10
05/11/2021 6 Lượt xem
Câu 6: Cho cấp số nhân (un) với u1 = 2 và u4 = 250. Công bội của cấp số cộng đã cho bằng
A. 125
B. 5
C. \(\frac{1}{5}\)
D. \(\frac{{125}}{3}\)
05/11/2021 8 Lượt xem

- 283 Lượt thi
- 90 Phút
- 50 Câu hỏi
- Học sinh
Cùng danh mục Thi THPT QG Môn Toán
- 1.2K
- 122
- 50
-
86 người đang thi
- 995
- 75
- 50
-
13 người đang thi
- 810
- 35
- 50
-
29 người đang thi
- 705
- 31
- 50
-
59 người đang thi
Chia sẻ:
Đăng Nhập để viết bình luận