Câu hỏi:
Đường thẳng nào dưới đây là tiệm cận ngang của đồ thị hàm số \(y = 10 + \frac{1}{{x - 10}}\)?
A. y = 0
B. x = 0
C. y = 10
D. x = 10
Câu 1: Cho điểm A(1;2;3) và đường thẳng \(d:\frac{{x + 1}}{1} = \frac{y}{{ - 2}} = \frac{{z - 1}}{3} \cdot \) Viết phương trình đường thẳng \(\Delta\) đi qua A vuông góc và cắt d.
A. \(\frac{{x - 1}}{6} = \frac{{y - 2}}{9} = \frac{{z - 3}}{4}\)
B. \(\frac{{x - 1}}{{23}} = \frac{{y - 2}}{{ - 19}} = \frac{{z - 3}}{{13}}\)
C. \(\frac{{x - 1}}{{23}} = \frac{{y - 2}}{{19}} = \frac{{z - 3}}{{ - 13}}\)
D. \(\frac{{x + 1}}{{23}} = \frac{{y + 2}}{{19}} = \frac{{z + 3}}{{13}}\)
05/11/2021 6 Lượt xem
Câu 2: Cho hình nón có bán kính đáy \(r = \sqrt 3 \) và độ dài đường sinh l = 4. Tính diện tích xung quanh Sxq của hình nón đã cho.
A. \({S_{xq}} = 12\pi \)
B. \({S_{xq}} = 4\sqrt 3 \pi \)
C. \({S_{xq}} = \sqrt {39} \pi \)
D. \({S_{xq}} = 8\sqrt 3 \pi \)
05/11/2021 6 Lượt xem
Câu 3: Cho hàm số f(x)>0 có đạo hàm liên tục trên \(\left[0, \frac{\pi}{3}\right]\) , đồng thời thỏa mãn \(f^{\prime}(0)=0 ; f(0)=1 \text { và } f^{\prime \prime}(x) \cdot f(x)+\left[\frac{f(x)}{\cos x}\right]^{2}=\left[f^{\prime}(x)\right]^{2}\). Tính \(T=f\left(\frac{\pi}{3}\right)\)
A. \(T=\frac{3}{4}\)
B. \(T=-\frac{\sqrt{3}}{2}\)
C. \( T=\frac{1}{2}\)
D. \(T=\frac{\sqrt{3}}{14}\)
05/11/2021 6 Lượt xem
Câu 4: Cho a là số thực dương tùy ý, \(\ln \frac{{\rm{e}}}{{{a^2}}}\) bằng
A. \(2\left( {1 + \ln a} \right)\)
B. \(1 - \frac{1}{2}\ln a\)
C. \(2\left( {1 - \ln a} \right)\)
D. \(1 - 2\ln a\)
05/11/2021 8 Lượt xem
Câu 5: Xét các số thực a và b thỏa mãn \({\log _2}\left( {{2^a} \cdot {{128}^b}} \right) = {\log _{2\sqrt 2 }}2\). Mệnh đề nào dưới đây là đúng?
A. 3a + 18b = 2
B. a + 6b = 1
C. a + 6b = 7
D. 3a + 18b = 4
05/11/2021 7 Lượt xem
05/11/2021 5 Lượt xem

- 284 Lượt thi
- 90 Phút
- 50 Câu hỏi
- Học sinh
Cùng danh mục Thi THPT QG Môn Toán
- 1.2K
- 122
- 50
-
10 người đang thi
- 1.0K
- 75
- 50
-
45 người đang thi
- 839
- 35
- 50
-
10 người đang thi
- 729
- 31
- 50
-
27 người đang thi
Chia sẻ:
Đăng Nhập để viết bình luận