Câu hỏi:
Gọi z1; z2 nghiệm của phương trình \({z^2} + 4z + 5 = 0\). Tìm \(w = {\left( {1 + {z_1}} \right)^{100}} + {\left( {1 + {z_2}} \right)^{100}}.\)
A. \(w = {2^{50}}i\)
B. \(w = - {2^{51}}\)
C. \(w = {2^{51}}\)
D. \(w = - {2^{50}}i\)
Câu 1: Nghiệm của phương trình \({\log _2}\left( {3{\rm{x}} - 2} \right) = 3\) là
A. x = 8
B. \(x = \frac{{10}}{3}\)
C. x = 1
D. \(x = \frac{1}{3}\)
05/11/2021 7 Lượt xem
Câu 2: Cho hàm số f(x)>0 có đạo hàm liên tục trên \(\left[0, \frac{\pi}{3}\right]\) , đồng thời thỏa mãn \(f^{\prime}(0)=0 ; f(0)=1 \text { và } f^{\prime \prime}(x) \cdot f(x)+\left[\frac{f(x)}{\cos x}\right]^{2}=\left[f^{\prime}(x)\right]^{2}\). Tính \(T=f\left(\frac{\pi}{3}\right)\)
A. \(T=\frac{3}{4}\)
B. \(T=-\frac{\sqrt{3}}{2}\)
C. \( T=\frac{1}{2}\)
D. \(T=\frac{\sqrt{3}}{14}\)
05/11/2021 6 Lượt xem
05/11/2021 5 Lượt xem
Câu 4: Cho khối chóp S.ABCD có đáy ABCD là hình chữ nhật,AB =2a, AD = a cạnh bên SA vuông góc với đáy, SA=3a.Thể tích của khối chóp S.ABCD là
A. \(V = \frac{3}{2}{a^3}.\)
B. \(V = 3{a^3}.\)
C. \(V = 2{a^3}.\)
D. \(V = 9{a^3}.\)
05/11/2021 9 Lượt xem
Câu 5: Cho hình trụ có chiều cao bằng 8a. Biết hai điểm A, C lần lượt nằm trên hai đáy thỏa AC = 10a, khoảng cách giữa AC và trục của hình trụ bằng 4a. Thể tích của khối trụ đã cho là
A. \(128\pi {a^3}\)
B. \(320\pi {a^3}\)
C. \(80\pi {a^3}\)
D. \(200\pi {a^3}\)
05/11/2021 7 Lượt xem
Câu 6: Cho hàm số \(f(x) = \frac{{2 - ax}}{{bx - c}}\left( {a,b,c \in R,b \ne 0} \right)\) có bảng biến thiên như sau:
Tổng các số \({\left( {a + b + c} \right)^2}\) thuộc khoảng nào sau đây?
A. (1;2)
B. (2;3)
C. \(\left( {0;\frac{4}{9}} \right)\)
D. \(\left( {\frac{4}{9};1} \right)\)
05/11/2021 6 Lượt xem
- 283 Lượt thi
- 90 Phút
- 50 Câu hỏi
- Học sinh
Chia sẻ:
Đăng Nhập để viết bình luận