Câu hỏi:
Cho hàm số f(x) có đạo hàm trên R và có dấu của f'(x) như sau
Hàm số y = f(2-x) có bao nhiêu điểm cực trị
A. 3
B. 1
C. 2
D. 4
Câu 1: Cho hàm số y = f(x) xác định, liên tục trên đoạn [-4;0] và có đồ thị là đường cong trong hình vẽ bên. Hàm số f(x) đạt cực tiểu tại điểm nào dưới đây?
A. x = -1
B. x = -3
C. x = 2
D. x = -2
05/11/2021 8 Lượt xem
Câu 2: Diện tích hình phẳng giới hạn bởi các đường \(y=\left|x^{2}-4 x+3\right|, y=x+3 \text { là } S=\frac{a}{b}, (a ; b \in \mathbb{Z} ; a \neq 0) ; \frac{a}{b}\) là phân số tối giản. Khẳng định nào sau đây là đúng?
A. b-a+103=0
B. b a+654=0
C. \(\frac{b^{2}}{a}=\frac{25}{109}\)
D. \(b-a^{3}+107=0\)
05/11/2021 6 Lượt xem
Câu 3: Cho hàm số f(x) có f(0) = -1 và \(f'\left( x \right) = x\left( {6 + 12x + {e^{ - x}}} \right),\forall x \in R\). Khi đó \(\int\limits_0^1 {f\left( x \right)} {\rm{d}}x\) bằng
A. 3e
B. 3e-1
C. 4-3e-1
D. -3e-1
05/11/2021 5 Lượt xem
Câu 4: Cho điểm A(1;2;3) và đường thẳng \(d:\frac{{x + 1}}{1} = \frac{y}{{ - 2}} = \frac{{z - 1}}{3} \cdot \) Viết phương trình đường thẳng \(\Delta\) đi qua A vuông góc và cắt d.
A. \(\frac{{x - 1}}{6} = \frac{{y - 2}}{9} = \frac{{z - 3}}{4}\)
B. \(\frac{{x - 1}}{{23}} = \frac{{y - 2}}{{ - 19}} = \frac{{z - 3}}{{13}}\)
C. \(\frac{{x - 1}}{{23}} = \frac{{y - 2}}{{19}} = \frac{{z - 3}}{{ - 13}}\)
D. \(\frac{{x + 1}}{{23}} = \frac{{y + 2}}{{19}} = \frac{{z + 3}}{{13}}\)
05/11/2021 6 Lượt xem
Câu 5: Cho khối hộp đứng có đáy là một hình thoi có độ dài đường chéo nhỏ bằng 10 và góc nhọn bằng 60o. Diện tích mỗi mặt bên của khối hộp bằng 10. Thể tích của khối hộp đã cho bằng
A. \(25 \sqrt{3}\)
B. 50
C. \(50 \sqrt{3}\)
D. \(100 \sqrt{3}\)
05/11/2021 7 Lượt xem
Câu 6: Cho khối chóp S.ABCD có đáy ABCD là hình chữ nhật,AB =2a, AD = a cạnh bên SA vuông góc với đáy, SA=3a.Thể tích của khối chóp S.ABCD là
A. \(V = \frac{3}{2}{a^3}.\)
B. \(V = 3{a^3}.\)
C. \(V = 2{a^3}.\)
D. \(V = 9{a^3}.\)
05/11/2021 9 Lượt xem
- 283 Lượt thi
- 90 Phút
- 50 Câu hỏi
- Học sinh
Chia sẻ:
Đăng Nhập để viết bình luận