Câu hỏi: Hàm số nào sau đây không phải là một nguyên hàm của: \(f(x) = {2^{\sqrt x }}\dfrac{{\ln x}}{{\sqrt x }}\) ?
A. \(2\left( {{2^{\sqrt x }} - 1} \right) + C\).
B. \({2^{\sqrt x }} + C\).
C. \({2^{\sqrt x + 1}}\).
D. \(2\left( {{2^{\sqrt x }} + 1} \right) + C\).
Câu 1: Tính tích phân \(\int\limits_{ - \dfrac{\pi }{3}}^{\dfrac{\pi }{3}} {{x^3}\cos x\,dx} \) ta được:
A. \(\dfrac{{2{\pi ^3}\sqrt 3 }}{{27}} + \dfrac{{{\pi ^2}}}{3} + 6 - 4\sqrt 3 \).
B. \(\dfrac{{{\pi ^3}\sqrt 3 }}{{27}} + \dfrac{{{\pi ^2}}}{6} + 6 - 4\sqrt 3 \).
C. \(\dfrac{{2{\pi ^3}\sqrt 3 }}{{27}} + \dfrac{{{\pi ^2}}}{3} + 3 - 2\sqrt 3 \).
D. 0
18/11/2021 3 Lượt xem
18/11/2021 1 Lượt xem
Câu 3: Nếu \(\int\limits_a^d {f(x)\,dx = 5\,,\,\,\int\limits_b^d {f(x)\,dx = 2} \,} \) với a < d < b thì \(\int\limits_a^b {f(x)\,dx} \) bằng :
A. 3
B. 2
C. 10
D. 0
18/11/2021 2 Lượt xem
Câu 4: Trong không gian \(Oxyz\) cho tam giác \(ABC\) có \(A(1;0;0),B(0;0;1),C(2;1;1)\). Tam giác \(ABC\) có diện tích bằng
A. \(\sqrt 6 \).
B. \(\dfrac{{\sqrt 6 }}{3}\).
C. \(\dfrac{{\sqrt 6 }}{2}\).
D. \(\dfrac{1}{2}\).
18/11/2021 2 Lượt xem
18/11/2021 1 Lượt xem
Câu 6: Tính nguyên hàm \(\int {{{\sin }^3}x.\cos x\,dx} \) ta được kết quả là:
A. \( - {\sin ^4}x + C\).
B. \(\dfrac{1}{4}{\sin ^4}x + C\).
C. \( - \dfrac{1}{4}{\sin ^4}x + C\).
D. \({\sin ^4}x + C\).
18/11/2021 1 Lượt xem
- 0 Lượt thi
- 60 Phút
- 40 Câu hỏi
- Học sinh
Cùng danh mục Thư viện đề thi lớp 12
- 648
- 0
- 40
-
13 người đang thi
- 690
- 13
- 40
-
13 người đang thi
- 612
- 6
- 30
-
67 người đang thi
- 590
- 7
- 30
-
35 người đang thi
Chia sẻ:
Đăng Nhập để viết bình luận