Câu hỏi: Hàm số nào sau đây không phải là một nguyên hàm của: \(f(x) = {2^{\sqrt x }}\dfrac{{\ln x}}{{\sqrt x }}\) ?
A. \(2\left( {{2^{\sqrt x }} - 1} \right) + C\).
B. \({2^{\sqrt x }} + C\).
C. \({2^{\sqrt x + 1}}\).
D. \(2\left( {{2^{\sqrt x }} + 1} \right) + C\).
Câu 1: Cho hình (H) giới hạn bởi đường cong \({y^2} + x = 0\), trục Oy và hai đường thẳng y = 0, y= 1. Thể tích khối tròn xoay tạo thành khi quay (H) quanh trục Oy được tính bởi:
A. \(V = {\pi ^2}\int\limits_0^1 {{x^4}\,dx} \)
B. \(V = \pi \int\limits_0^1 {{y^2}\,dy}\)
C. \(V = \pi \int\limits_0^1 {{y^4}\,dy}\)
D. \(V = \pi \int\limits_0^1 { - {y^4}\,dy}\)
18/11/2021 1 Lượt xem
Câu 2: Nếu \(\int\limits_a^d {f(x)\,dx = 5\,,\,\,\int\limits_b^d {f(x)\,dx = 2} \,} \) với a < d < b thì \(\int\limits_a^b {f(x)\,dx} \) bằng :
A. 3
B. 2
C. 10
D. 0
18/11/2021 2 Lượt xem
18/11/2021 1 Lượt xem
Câu 4: Tính nguyên hàm \(\int {{{\sin }^3}x.\cos x\,dx} \) ta được kết quả là:
A. \( - {\sin ^4}x + C\).
B. \(\dfrac{1}{4}{\sin ^4}x + C\).
C. \( - \dfrac{1}{4}{\sin ^4}x + C\).
D. \({\sin ^4}x + C\).
18/11/2021 1 Lượt xem
Câu 5: Tìm nguyên hàm của \(f(x) = 4\cos x + \dfrac{1}{{{x^2}}}\) trên \((0; + \infty )\).
A. \(4\cos x + \ln x + C\).
B. \(4\cos x + \dfrac{1}{x} + C\).
C. \(4\sin x - \dfrac{1}{x} + C\).
D. \(4\sin x + \dfrac{1}{x} + C\).
18/11/2021 1 Lượt xem
Câu 6: Trong không gian \(Oxyz\) cho tam giác \(ABC\) có \(A(1;0;0),B(0;0;1),C(2;1;1)\). Tam giác \(ABC\) có diện tích bằng
A. \(\sqrt 6 \).
B. \(\dfrac{{\sqrt 6 }}{3}\).
C. \(\dfrac{{\sqrt 6 }}{2}\).
D. \(\dfrac{1}{2}\).
18/11/2021 2 Lượt xem
- 0 Lượt thi
- 60 Phút
- 40 Câu hỏi
- Học sinh
Cùng danh mục Thư viện đề thi lớp 12
- 683
- 0
- 40
-
38 người đang thi
- 727
- 13
- 40
-
35 người đang thi
- 647
- 6
- 30
-
64 người đang thi
- 623
- 7
- 30
-
27 người đang thi
Chia sẻ:
Đăng Nhập để viết bình luận