Câu hỏi: Giả sử hình phẳng tạo bởi đường cong \(y = {\sin ^2}x,\,\,y = - {\cos ^2}x\,,\,x = \pi ,\,x = 2\pi \) có diện tích là S. Lựa chọn phương án đúng :
A. \(S = \pi \).
B. \(S = 2\pi \).
C. \(S = \dfrac{\pi }{2}\).
D. Cả 3 phương án trên đều sai.
Câu 1: Ba đỉnh của một hình bình hành có tọa độ là\(\left( {1;1;1} \right),\,\left( {2;3;4} \right),\,\left( {7;7;5} \right)\). Diện tích của hình bình hành đó bằng
A. \(2\sqrt {83} \).
B. \(\sqrt {83} \).
C. 83
D. \(\dfrac{{\sqrt {83} }}{2}\).
18/11/2021 1 Lượt xem
Câu 2: Trong các khẳng định sau, khẳng định nào sai ?
A. Nếu f(x), g(x) là các hàm số liên tục trên R thì \(\int {\left[ {f(x) + g(x)} \right]} \,dx = \int {f(x)\,dx + \int {g(x)\,dx} } \)
B. Nếu các hàm số u(x), v(x) liên tục và có đạo hàm trên R thì \(\int {u(x)v'(x)\,dx + \int {v(x)u'(x)\,dx = u(x)v(x)} } \)
C. Nếu F(x) và G(x) đều là nguyên hàm của hàm số f(x) thì F(x) – G(x) = C ( với C là hằng số )
D. \(F(x) = {x^2}\) là một nguyên hàm của f(x) = 2x.
18/11/2021 1 Lượt xem
Câu 3: Trong không gian \(Oxyz\) cho tam giác \(ABC\) có \(A(1;0;0),B(0;0;1),C(2;1;1)\). Tam giác \(ABC\) có diện tích bằng
A. \(\sqrt 6 \).
B. \(\dfrac{{\sqrt 6 }}{3}\).
C. \(\dfrac{{\sqrt 6 }}{2}\).
D. \(\dfrac{1}{2}\).
18/11/2021 2 Lượt xem
Câu 4: Trong các mệnh đề sau, mệnh đề nào đúng ?
A. Hàm số \(y = \dfrac{1}{x}\) có nguyên hàm trên \(( - \infty ; + \infty )\).
B. \(3{x^2}\) là một nguyên hàm của \({x^3}\) trên \(( - \infty ; + \infty )\).
C. Hàm số \(y = |x|\) có nguyên hàm trên \(( - \infty ; + \infty )\).
D. \(\dfrac{1}{x} + C\) là họ nguyên hàm của lnx trên \((0; + \infty )\).
18/11/2021 2 Lượt xem
Câu 5: Cho hình (H) giới hạn bởi đường cong \({y^2} + x = 0\), trục Oy và hai đường thẳng y = 0, y= 1. Thể tích khối tròn xoay tạo thành khi quay (H) quanh trục Oy được tính bởi:
A. \(V = {\pi ^2}\int\limits_0^1 {{x^4}\,dx} \)
B. \(V = \pi \int\limits_0^1 {{y^2}\,dy}\)
C. \(V = \pi \int\limits_0^1 {{y^4}\,dy}\)
D. \(V = \pi \int\limits_0^1 { - {y^4}\,dy}\)
18/11/2021 1 Lượt xem
Câu 6: Cho F(x) là một nguyên hàm của hàm số \(f(x) = {e^x} + 2x\) thỏa mãn \(F(0) = \dfrac{3}{2}\). Tìm F(x).
A. \(F(x) = {e^x} + {x^2} + \dfrac{3}{4}\).
B. \(F(x) = {e^x} + {x^2} + \dfrac{1}{2}\).
C. \(F(x) = {e^x} + {x^2} + \dfrac{5}{2}\).
D. \(F(x) = {e^x} + {x^2} - \dfrac{1}{2}\).
18/11/2021 2 Lượt xem

- 0 Lượt thi
- 60 Phút
- 40 Câu hỏi
- Học sinh
Cùng danh mục Thư viện đề thi lớp 12
- 619
- 0
- 40
-
73 người đang thi
- 665
- 13
- 40
-
77 người đang thi
- 573
- 3
- 30
-
46 người đang thi
- 553
- 3
- 30
-
83 người đang thi
Chia sẻ:
Đăng Nhập để viết bình luận