Câu hỏi: Cho tích phân \(I = \int\limits_0^{2004\pi } {\sqrt {1 - \cos 2x} \,dx} \). Phát biểu nào sau đây sai?
A. \(I = \sqrt 2 \cos x\left| \begin{array}{l}2004\pi \\0\end{array} \right.\).
B. \(I = 2004\int\limits_0^\pi {\sqrt {1 - \cos 2x} } \,dx\).
C. \(I = 4008\sqrt 2 \).
D. \(I = 2004\sqrt 2 \int\limits_0^\pi {\sin x\,dx} \).
Câu 1: Tích vô hướng của hai vectơ \(\overrightarrow a = \left( { - 2;2;5} \right),\,\overrightarrow b = \left( {0;1;2} \right)\) trong không gian bằng
A. 10
B. 13
C. 12
D. 14
18/11/2021 1 Lượt xem
Câu 2: Cho F(x) là một nguyên hàm của hàm số \(f(x) = {e^x} + 2x\) thỏa mãn \(F(0) = \dfrac{3}{2}\). Tìm F(x).
A. \(F(x) = {e^x} + {x^2} + \dfrac{3}{4}\).
B. \(F(x) = {e^x} + {x^2} + \dfrac{1}{2}\).
C. \(F(x) = {e^x} + {x^2} + \dfrac{5}{2}\).
D. \(F(x) = {e^x} + {x^2} - \dfrac{1}{2}\).
18/11/2021 2 Lượt xem
Câu 3: Trong không gian \(Oxyz\) cho ba điểm \(A(1;0;0),B(0;0;1),C(2;1;1)\). Tam giác \(ABC\) là
A. tam giác vuông tại \(A\)
B. tam giác cân tại \(A\).
C. tam giác vuông cân tại \(A\).
D. Tam giác đều.
18/11/2021 1 Lượt xem
Câu 4: Giả sử hình phẳng tạo bởi đường cong \(y = {\sin ^2}x,\,\,y = - {\cos ^2}x\,,\,x = \pi ,\,x = 2\pi \) có diện tích là S. Lựa chọn phương án đúng :
A. \(S = \pi \).
B. \(S = 2\pi \).
C. \(S = \dfrac{\pi }{2}\).
D. Cả 3 phương án trên đều sai.
18/11/2021 2 Lượt xem
Câu 5: Trong không gian \(Oxyz\) cho tam giác \(ABC\) có \(A(1;0;0),B(0;0;1),C(2;1;1)\). Tam giác \(ABC\) có diện tích bằng
A. \(\sqrt 6 \).
B. \(\dfrac{{\sqrt 6 }}{3}\).
C. \(\dfrac{{\sqrt 6 }}{2}\).
D. \(\dfrac{1}{2}\).
18/11/2021 2 Lượt xem
Câu 6: Giả sử \(\int\limits_1^5 {\dfrac{{dx}}{{2x - 1}} = \ln K} \). Giá trị của K là:
A. 1
B. 3
C. 80
D. 9
18/11/2021 1 Lượt xem
- 0 Lượt thi
- 60 Phút
- 40 Câu hỏi
- Học sinh
Cùng danh mục Thư viện đề thi lớp 12
- 634
- 0
- 40
-
86 người đang thi
- 676
- 13
- 40
-
55 người đang thi
- 594
- 6
- 30
-
53 người đang thi
- 573
- 7
- 30
-
74 người đang thi
Chia sẻ:
Đăng Nhập để viết bình luận