Câu hỏi:
Cho hình trụ có bán kính đáy bằng R và chiều cao bằng \(\frac{{3R}}{2}.\) Mặt phẳng (a) song song với trục của hình trụ và cách trục một khoảng bằng \(\frac{{R}}{2}.\) Diện tích thiết diện của hình trụ cắt bởi mặt phẳng (a) là
A. \(\frac{{2{R^2}\sqrt 3 }}{3}.\)
B. \(\frac{{3{R^2}\sqrt 3 }}{2}.\)
C. \(\frac{{3{R^2}\sqrt 2 }}{2}.\)
D. \(\frac{{2{R^2}\sqrt 2 }}{3}.\)
Câu 1: Gọi M, m lần lượt là giá trị lớn nhất và giá trị nhỏ nhất của hàm số \(y = \frac{{\sqrt {{x^2} - 1} }}{{x - 2}}\) trên tập hợp \(D = \left( { - \infty ; - 1} \right) \cup \left[ {1;\frac{3}{2}} \right].\) Tính P = M + m.
A. P = 2
B. P = 0
C. \(P = - \sqrt 5 .\)
D. \(P = \sqrt 3 .\)
05/11/2021 8 Lượt xem
Câu 2: Một hình trụ có bán kính đáy r = a độ dài đường sinh l = 2a. Diện tích toàn phần của hình trụ này là
A. \(2\pi {a^2}.\)
B. \(4\pi {a^2}.\)
C. \(6\pi {a^2}.\)
D. \(5\pi {a^2}.\)
05/11/2021 7 Lượt xem
Câu 3: Cho tích phân \(I = \int\limits_0^1 {\frac{{dx}}{{\sqrt {4 - {x^2}} }}.} \) Nếu đổi biến số \(x = 2\sin t,t \in \left( { - \frac{\pi }{2};\frac{\pi }{2}} \right)\) thì
A. \(I = \int\limits_0^{\frac{\pi }{6}} {dt} .\)
B. \(I = \int\limits_0^{\frac{\pi }{6}} {tdt} .\)
C. \(I = \int\limits_0^{\frac{\pi }{6}} {\frac{{dt}}{t}} .\)
D. \(I = \int\limits_0^{\frac{\pi }{3}} {dt} .\)
05/11/2021 8 Lượt xem
Câu 4: Tập nghiệm của bất phương trình \({\log _2}x > {\log _2}\left( {8 - x} \right)\) là
A. \(\left( {8; + \infty } \right).\)
B. \(\left( { - \infty ;4} \right).\)
C. (4;8)
D. (0;4)
05/11/2021 7 Lượt xem
Câu 5: Gọi z0 là nghiệm phức có phần ảo âm của phương trình \(2{z^2} - 2z + 13 = 0.\) Trên mặt phẳng tọa độ, điểm nào dưới đây là điểm biểu diễn của số phức \(w = i{z_0}?\)
A. \(M\left( {\frac{5}{4};\frac{1}{4}} \right).\)
B. \(N\left( {\frac{5}{4}; - \frac{1}{4}} \right).\)
C. \(P\left( {\frac{5}{2}; - \frac{1}{2}} \right).\)
D. \(Q\left( {\frac{5}{2};\frac{1}{2}} \right).\)
05/11/2021 9 Lượt xem
Câu 6: Viết công thức tính thể tích V của vật thể nằm giữa hai mặt phẳng x = 0 và x = ln 4 biết khi cắt vật thể bởi mặt phẳng vuông góc với trục hoành tại điểm có hoành độ \(x\left( {0 \le x \le \ln 4} \right),\) ta được thiết diện là một hình vuông có độ dài cạnh là \(\sqrt {x{e^x}} .\)
A. \(V = \int\limits_0^{\ln 4} {x{e^x}dx.} \)
B. \(V = \pi \int\limits_0^{\ln 4} {x{e^x}dx.} \)
C. \(V = \pi \int\limits_0^{\ln 4} {{{\left( {x{e^x}} \right)}^2}dx.} \)
D. \(V = \int\limits_0^{\ln 4} {\sqrt {x{e^x}} } dx.\)
05/11/2021 8 Lượt xem

Câu hỏi trong đề: Đề thi thử THPT QG năm 2021 môn Toán của Trường THPT Nam Việt
- 16 Lượt thi
- 90 Phút
- 50 Câu hỏi
- Học sinh
Cùng danh mục Thi THPT QG Môn Toán
- 2.0K
- 284
- 50
-
65 người đang thi
- 1.2K
- 122
- 50
-
52 người đang thi
- 1.0K
- 75
- 50
-
41 người đang thi
- 846
- 35
- 50
-
11 người đang thi
Chia sẻ:
Đăng Nhập để viết bình luận