Câu hỏi:
Cho hàm số f(x) có đạo hàm liên tục trên [-1;1] và thỏa mãn \(f\left( 1 \right) = 7,\int\limits_0^1 {xf\left( x \right)dx} = 1\). Khi đó \(\int\limits_0^1 {{x^2}f'\left( x \right)dx} \) bằng
A. 6
B. 8
C. 5
D. 9
05/11/2021 7 Lượt xem
Câu 2: Cho hàm số y = f(x) liên tục trên R và có bảng biến thiên như sau
Tìm tất cả các giá trị của tham số m sao cho phương trình \(\left| {f\left( {x - 2018} \right) + 2} \right| = m\) có bốn nghiệm thực phân biệt.
A. - 3 < m < 1.
B. 0 < m < 1.
C. Không có giá trị m.
D. 1 < m < 3.
05/11/2021 7 Lượt xem
Câu 3: Trong không gian, cho tam giác ABC vuông tại A, AB = a và \(AC = a\sqrt 3 .\) Tính độ dài đường sinh l của hình nón có được khi quay tam giác ABC xung quanh trục AB.
A. l = a
B. l = 2a
C. \(l = a\sqrt 3 .\)
D. \(l = a\sqrt 2 .\)
05/11/2021 9 Lượt xem
Câu 4: Xếp ngẫu nhiên ba người đàn ông, hai người đàn bà và một đứa bé vào ngồi 6 cái ghế xếp thành hàng ngang. Xác suất sao cho đứa bé ngồi giữa hai người đàn bà là bao nhiêu?
A. \(\frac{1}{{30}}.\)
B. \(\frac{1}{{5}}.\)
C. \(\frac{1}{{15}}.\)
D. \(\frac{1}{{6}}.\)
05/11/2021 8 Lượt xem
05/11/2021 8 Lượt xem
Câu 6: Xét các số thực a, b thỏa mãn điều kiện \(\frac{1}{3} < b < a < 1.\) Tìm giá trị nhỏ nhất của biểu thức \(P = {\log _a}\left( {\frac{{3b - 1}}{4}} \right) + 12\log _{\frac{b}{a}}^2a - 3.\)
A. min P = 13
B. \(\min P = \frac{1}{{\sqrt[3]{2}}}.\)
C. min P = 9
D. \(\min P = \sqrt[3]{2}.\)
05/11/2021 8 Lượt xem
Câu hỏi trong đề: Đề thi thử THPT QG năm 2021 môn Toán của Trường THPT Nam Việt
- 16 Lượt thi
- 90 Phút
- 50 Câu hỏi
- Học sinh
Chia sẻ:
Đăng Nhập để viết bình luận