Câu hỏi:

Cho hàm số f(x) có đạo hàm liên tục trên [-1;1] và thỏa mãn \(f\left( 1 \right) = 7,\int\limits_0^1 {xf\left( x \right)dx} = 1\). Khi đó \(\int\limits_0^1 {{x^2}f'\left( x \right)dx} \) bằng

501 Lượt xem
05/11/2021
3.5 8 Đánh giá

A. 6

B. 8

C. 5

D. 9

Đăng Nhập để xem đáp án
Câu hỏi khác cùng đề thi
Câu 2:

Cho tích phân \(I = \int\limits_0^1 {\frac{{dx}}{{\sqrt {4 - {x^2}} }}.} \) Nếu đổi biến số \(x = 2\sin t,t \in \left( { - \frac{\pi }{2};\frac{\pi }{2}} \right)\) thì 

A. \(I = \int\limits_0^{\frac{\pi }{6}} {dt} .\)

B. \(I = \int\limits_0^{\frac{\pi }{6}} {tdt} .\)

C. \(I = \int\limits_0^{\frac{\pi }{6}} {\frac{{dt}}{t}} .\)

D. \(I = \int\limits_0^{\frac{\pi }{3}} {dt} .\)

Xem đáp án

05/11/2021 8 Lượt xem

Câu 3:

Cho hàm số y = f(x) có bảng biến thiên như sau

Hàm số đã cho đồng biến trên khoảng nào dưới đây?

A. \(\left( {2; + \infty } \right).\)

B. \(\left( { - \infty ;1} \right).\)

C. \(\left( {0; + \infty } \right).\)

D. (0;2)

Xem đáp án

05/11/2021 8 Lượt xem

Câu 4:

Cho hình lăng trụ tam giác đều ABC.A'B'C' có tất cả các cạnh đều bằng a. Khoảng cách từ A đến mặt phẳng (A'BC) bằng

A. \(\frac{{a\sqrt 3 }}{4}.\)

B. \(\frac{{a\sqrt {21} }}{7}.\)

C. \(\frac{{a\sqrt 2 }}{2}.\)

D. \(\frac{{a\sqrt 6 }}{4}.\)

Xem đáp án

05/11/2021 7 Lượt xem

Chưa có bình luận

Đăng Nhập để viết bình luận

Đề thi thử THPT QG năm 2021 môn Toán của Trường THPT Nam Việt
Thông tin thêm
  • 16 Lượt thi
  • 90 Phút
  • 50 Câu hỏi
  • Học sinh