Câu hỏi: Cho hàm truyền \(G(s) = \frac{{20}}{{{s^2} + 4s + 8}}\) , hãy lập phương trình trạng thái.
A. \(A = \left[ {\begin{array}{*{20}{c}} 0&1\\ { - 3}&{ - 8} \end{array}} \right]{\rm{ ; B = }}\left[ \begin{array}{l} 20\\ 0 \end{array} \right]{\rm{ ; C = }}\left[ {\begin{array}{*{20}{c}} 1&0 \end{array}} \right]\)
B. \(A = \left[ {\begin{array}{*{20}{c}} 0&1\\ { - 2}&{ - 1} \end{array}} \right]{\rm{ ; B = }}\left[ \begin{array}{l} 0\\ 20 \end{array} \right]{\rm{ ; C = }}\left[ {\begin{array}{*{20}{c}} 1&0 \end{array}} \right]\)
C. \(A = \left[ {\begin{array}{*{20}{c}} 0&1\\ { - 8}&{ - 4} \end{array}} \right]{\rm{ ; B = }}\left[ \begin{array}{l} 0\\ 20 \end{array} \right]{\rm{ ; C = }}\left[ {\begin{array}{*{20}{c}} 1&0 \end{array}} \right]\)
D. \(A = \left[ {\begin{array}{*{20}{c}} 1&1\\ { - 2}&{ - 8} \end{array}} \right]{\rm{ ; B = }}\left[ \begin{array}{l} 20\\ 0 \end{array} \right]{\rm{ ; C = }}\left[ {\begin{array}{*{20}{c}} 1&0 \end{array}} \right]\)
Câu 1: Cho hàm truyền \(G(s) = \frac{2}{{{s^2} + 2s + 8}}\) , hãy lập phương trình trạng thái
A. \(A = \left[ {\begin{array}{*{20}{c}} 0&1\\ { - 8}&{ - 2} \end{array}} \right]{\rm{ ; B = }}\left[ \begin{array}{l} 0\\ 2 \end{array} \right]{\rm{ ; C = }}\left[ {\begin{array}{*{20}{c}} 1&0 \end{array}} \right]\)
B. \(A = \left[ {\begin{array}{*{20}{c}} 0&1\\ { - 2}&{ - 1} \end{array}} \right]{\rm{ ; B = }}\left[ \begin{array}{l} 0\\ 20 \end{array} \right]{\rm{ ; C = }}\left[ {\begin{array}{*{20}{c}} 1&0 \end{array}} \right]\)
C. \(A = \left[ {\begin{array}{*{20}{c}} 0&1\\ { - 8}&{ - 2} \end{array}} \right]{\rm{ ; B = }}\left[ \begin{array}{l} 0\\ 20 \end{array} \right]{\rm{ ; C = }}\left[ {\begin{array}{*{20}{c}} 1&0 \end{array}} \right]\)
D. \(A = \left[ {\begin{array}{*{20}{c}} 1&1\\ { - 2}&{ - 8} \end{array}} \right]{\rm{ ; B = }}\left[ \begin{array}{l} 20\\ 0 \end{array} \right]{\rm{ ; C = }}\left[ {\begin{array}{*{20}{c}} 1&0 \end{array}} \right]\)
30/08/2021 3 Lượt xem
Câu 2: Hàm truyền đạt \(G(s) = \frac{{{V_o}(s)}}{{{V_i}(s)}}{\cos ^{ - 1}}\theta \) của mạch điện ở hình sau là: 
A. \(- \frac{{{R_2}}}{{{R_1}}} - \frac{1}{{{R_1}Cs}}\)
B. \(- \frac{{{R_2}}}{{{R_1}}} + \frac{1}{{{R_1}Cs}}\)
C. \(\frac{{{R_2}}}{{{R_1}}} + \frac{1}{{{R_1}Cs}}\)
D. \( - \frac{{{R_1}}}{{{R_2}}} - \frac{1}{{{R_1}Cs}}\)
30/08/2021 3 Lượt xem
Câu 3: Cho hệ thống có hàm truyền tương đương sau: \({G_{td}}(s) = \frac{{s + 1}}{{{s^3} + 3{s^2} + 4s + 1}}\)
A. Hệ thống không ổn định, có 3 nghiệm cực bên phải mặt phẳng phức
B. Hệ thống ổn định, có 3 nghiệm cực nằm bên trái mặt phẳng phức
C. Hệ thống không ổn định, có 2 nghiệm cực bên phải mặt phẳng phức, 1 nghiệm cực bên trái mặt phẳng phức
D. Hệ thống không ổn định, có 1 nghiệm cực bên phải mặt phẳng phức, 2 nghiệm cực bên trái mặt phẳng phức
30/08/2021 5 Lượt xem
Câu 4: Hệ thống rời rạc là ổn định nếu tất cả các nghiệm của phương trình đặc tính:
A. Nằm bên trái mặt phẳng phức
B. Nằm bên trong vòng tròn đơn vị
C. Nằm bên ngoài vòng tròn đơn vị
D. Nằm bên phải mặt phẳng phức
30/08/2021 3 Lượt xem
Câu 5: Hàm truyền tương đương của hệ thống hồi tiếp như hình vẽ là: 
A. \({G_{td}}(s) = \frac{{s + 3}}{{{s^2} + 5s + 7}}\)
B. \({G_{td}}(s) = \frac{{s + 2}}{{{s^2} + 5s + 7}}\)
C. \({G_{td}}(s) = \frac{1}{{{s^2} + 5s + 2}}\)
D. \({G_{td}}(s) = \frac{{s + 2}}{{{s^2} + 5s + 6}}\)
30/08/2021 2 Lượt xem
Câu 6: Cho hệ thống có cấu trúc sau: ![]()
A. \({G_{td}}(s) = \frac{{3s + 10}}{{5{s^3} + 16{s^2} + 11s + 10}}\)
B. \({G_{td}}(s) = \frac{{3s + 9}}{{5{s^3} + 16{s^2} + 11s + 11}}\)
C. \({G_{td}}(s) = \frac{{3s + 9}}{{5{s^3} + 16{s^2} + 11s + 10}}\)
D. \({G_{td}}(s) = \frac{{s + 9}}{{5{s^3} + 16{s^2} + 11s + 10}}\)
30/08/2021 4 Lượt xem

Câu hỏi trong đề: Bộ câu hỏi trắc nghiệm Lý thuyết điều khiển tự động - Phần 8
- 58 Lượt thi
- 30 Phút
- 25 Câu hỏi
- Sinh viên
Cùng chủ đề Bộ câu hỏi trắc nghiệm Lý thuyết điều khiển tự động có đáp án
- 1.5K
- 143
- 25
-
76 người đang thi
- 1.5K
- 160
- 20
-
59 người đang thi
- 1.4K
- 112
- 25
-
10 người đang thi
- 812
- 77
- 25
-
77 người đang thi
Chia sẻ:
Đăng Nhập để viết bình luận