Câu hỏi:
Hệ thống có quỹ đạo nghiệm số như hình vẽ. Số nghiệm cực của hệ thống là:
A. 2
B. 3
C. 4
D. 5
Câu 1: Cho hệ thống có hàm truyền tương đương sau: ![]()
A. Hệ thống ổn định, có 2 nghiệm cực bên phải mặt phẳng phức
B. Hệ thống ổn định, có 2 nghiệm cực nằm bên trái mặt phẳng phức
C. Hệ thống không ổn định, có 2 nghiệm cực bên phải mặt phẳng phức, 1 nghiệm cực bên trái mặt phẳng phức
D. Hệ thống không ổn định, có 1 nghiệm bên phải mặt phẳng phức, 2 nghiệm cực bên trái mặt phẳng phức
30/08/2021 3 Lượt xem
Câu 2: Hàm truyền đạt \(G(s) = \frac{{{V_o}(s)}}{{{V_i}(s)}}{\cos ^{ - 1}}\theta \) của mạch điện ở hình sau là: 
A. \(- \frac{{{R_2}}}{{{R_1}}} - \frac{1}{{{R_1}Cs}}\)
B. \(- \frac{{{R_2}}}{{{R_1}}} + \frac{1}{{{R_1}Cs}}\)
C. \(\frac{{{R_2}}}{{{R_1}}} + \frac{1}{{{R_1}Cs}}\)
D. \( - \frac{{{R_1}}}{{{R_2}}} - \frac{1}{{{R_1}Cs}}\)
30/08/2021 3 Lượt xem
Câu 3: Biểu đồ Bode biên độ của khâu tích phân lý tưởng G(s)=1/s
A. đi qua điểm ω =0 và có độ dốc là 20dB/dec
B. đi qua điểm ω =0 và có độ dốc là -20dB/dec
C. đi qua điểm ω =1 và có độ dốc là 20dB/dec
D. đi qua điểm ω =1và có độ dốc là -20dB/dec
30/08/2021 2 Lượt xem
Câu 4: Cho hệ thống hồi tiếp âm đơn vị sau. Sai số xác lập exl là: 
A. \({e_{xl}} = \mathop {\lim }\limits_{t \to \infty } e(t) = \mathop {\lim }\limits_{s \to 0} \frac{{sR(s)}}{{1 + G(s)H(s)}}\)
B. \({e_{xl}} = \mathop {\lim }\limits_{t \to 0} e(t) = \mathop {\lim }\limits_{s \to \infty } \frac{{sR(s)}}{{1 + G(s)H(s)}}\)
C. \({e_{xl}} = \mathop {\lim }\limits_{t \to \infty } e(t) = \mathop {\lim }\limits_{s \to 0} \frac{{R(s)}}{{1 + G(s)}}\)
D. \({e_{xl}} = \mathop {\lim }\limits_{t \to \infty } e(t) = \mathop {\lim }\limits_{s \to 0} \frac{{sG(s)}}{{1 + R(s)G(s)}}\)
30/08/2021 3 Lượt xem
Câu 5: Cho hệ thống có cấu trúc sau: ![]()
A. \({G_{td}}(s) = \frac{{3s + 10}}{{5{s^3} + 16{s^2} + 11s + 10}}\)
B. \({G_{td}}(s) = \frac{{3s + 9}}{{5{s^3} + 16{s^2} + 11s + 11}}\)
C. \({G_{td}}(s) = \frac{{3s + 9}}{{5{s^3} + 16{s^2} + 11s + 10}}\)
D. \({G_{td}}(s) = \frac{{s + 9}}{{5{s^3} + 16{s^2} + 11s + 10}}\)
30/08/2021 4 Lượt xem
Câu 6: Cho hàm truyền \(G(s) = \frac{2}{{{s^2} + 2s + 8}}\) , hãy lập phương trình trạng thái
A. \(A = \left[ {\begin{array}{*{20}{c}} 0&1\\ { - 8}&{ - 2} \end{array}} \right]{\rm{ ; B = }}\left[ \begin{array}{l} 0\\ 2 \end{array} \right]{\rm{ ; C = }}\left[ {\begin{array}{*{20}{c}} 1&0 \end{array}} \right]\)
B. \(A = \left[ {\begin{array}{*{20}{c}} 0&1\\ { - 2}&{ - 1} \end{array}} \right]{\rm{ ; B = }}\left[ \begin{array}{l} 0\\ 20 \end{array} \right]{\rm{ ; C = }}\left[ {\begin{array}{*{20}{c}} 1&0 \end{array}} \right]\)
C. \(A = \left[ {\begin{array}{*{20}{c}} 0&1\\ { - 8}&{ - 2} \end{array}} \right]{\rm{ ; B = }}\left[ \begin{array}{l} 0\\ 20 \end{array} \right]{\rm{ ; C = }}\left[ {\begin{array}{*{20}{c}} 1&0 \end{array}} \right]\)
D. \(A = \left[ {\begin{array}{*{20}{c}} 1&1\\ { - 2}&{ - 8} \end{array}} \right]{\rm{ ; B = }}\left[ \begin{array}{l} 20\\ 0 \end{array} \right]{\rm{ ; C = }}\left[ {\begin{array}{*{20}{c}} 1&0 \end{array}} \right]\)
30/08/2021 3 Lượt xem

Câu hỏi trong đề: Bộ câu hỏi trắc nghiệm Lý thuyết điều khiển tự động - Phần 8
- 58 Lượt thi
- 30 Phút
- 25 Câu hỏi
- Sinh viên
Cùng chủ đề Bộ câu hỏi trắc nghiệm Lý thuyết điều khiển tự động có đáp án
- 1.8K
- 143
- 25
-
66 người đang thi
- 1.7K
- 163
- 20
-
43 người đang thi
- 1.5K
- 113
- 25
-
17 người đang thi
- 960
- 77
- 25
-
38 người đang thi
Chia sẻ:
Đăng Nhập để viết bình luận