Câu hỏi: Cho hàm số \(z = \ln (x\sin y).\)  Tính \(\frac{{\partial z}}{{\partial y}}(\frac{\pi }{{12}};\frac{\pi }{4})\)  

160 Lượt xem
30/08/2021
2.9 8 Đánh giá

A. \(\frac{1}{{\sqrt 2 }}\)

B. \(\sqrt 3\)

C. 1

D. 0

Đăng Nhập để xem đáp án
Câu hỏi khác cùng đề thi
Câu 1: Cho hàm \(z = {x^2} - y - \ln |y| - 2\)  . Khẳng định nào sau đây đúng?

A. z đạt cực tiểu tại M(0,-1)

B. z đạt cực đại tại M(0,-1)

C.  z luôn có các đạo hàm riêng trên R2

D.  z có điểm dừng nhưng không có cực trị

Xem đáp án

30/08/2021 1 Lượt xem

Câu 2: Tính vi phân cấp 2 của hàm \(z = {\sin ^2}x + {e^{{y^2}}}\)

A. \({d^2}z = 2\cos 2xd{x^2} + {e^{{y^2}}}(4{y^2} + 2)d{y^2}\)

B. \({d^2}z = 2\cos 2xd{x^2} + 2{e^{{y^2}}}d{y^2}\)

C. \({d^2}z = - 2\cos 2xd{x^2} + 2y{e^{{y^2}}}d{y^2}\)

D. \({d^2}z = \cos 2xd{x^2} + {e^{{y^2}}}d{y^2}\)

Xem đáp án

30/08/2021 1 Lượt xem

Câu 3: Cho hàm số \(z = {\mathop{\rm arccot}\nolimits} \frac{x}{y}\)  . Tính \(\frac{{\partial z}}{{\partial y}}\)

A. \(- \frac{x}{{{x^2} + {y^2}}}\)

B. \(\frac{x}{{{x^2} + {y^2}}}\)

C. \( - \frac{y}{{{x^2} + {y^2}}}\)

D. \(- \frac{1}{{{x^2}y + {y^3}}}\)

Xem đáp án

30/08/2021 2 Lượt xem

Câu 4: Dùng vi phân cấp 1 tính gần đúng giá trị \(\ln 1,01\sqrt {0,98} \)

A. 1

B. \(\frac{1}{{60}}\)

C. \(\frac{1}{{300}}\)

D. \(\frac{2}{{150}}\)

Xem đáp án

30/08/2021 3 Lượt xem

Câu 6: Hàm số \(z(x,y) = \ln \sqrt {{x^2} + {y^4}} \)  liên tục tại:

A. R2\{0,0}

B. R2

C. R2\{t,-t2)|t\( \in\)  R}

D. R2\\(\left\{ {(t, - {t^4}|t \in R} \right\}\)

Xem đáp án

30/08/2021 3 Lượt xem

Chưa có bình luận

Đăng Nhập để viết bình luận

Bộ câu hỏi trắc nghiệm môn Toán cao cấp C3 - Phần 5
Thông tin thêm
  • 0 Lượt thi
  • 45 Phút
  • 20 Câu hỏi
  • Sinh viên