Câu hỏi:
Cho hàm số \(y = {x^3} + mx + 2\) có đồ thị (Cm). Tìm tất cả các giá trị m để đồ thị (Cm) cắt trục hoành tại một điểm duy nhất.
A. m < -3
B. \(m \le 0\)
C. \(m \ge 0\)
D. m > - 3
Câu 1: Đường thẳng nào dưới đây là tiệm cận ngang của đồ thị hàm số \(y = 10 + \frac{1}{{x - 10}}\)?
A. y = 0
B. x = 0
C. y = 10
D. x = 10
05/11/2021 6 Lượt xem
Câu 2: Nghiệm của phương trình \({\log _2}\left( {3{\rm{x}} - 2} \right) = 3\) là
A. x = 8
B. \(x = \frac{{10}}{3}\)
C. x = 1
D. \(x = \frac{1}{3}\)
05/11/2021 7 Lượt xem
Câu 3: Có bao nhiêu số tự nhiên gồm ba chữ số phân biệt được lập từ các chữ số khác 0?
A. \({\rm{C}}_9^3\)
B. \({\rm{A}}_{10}^3\)
C. 93
D. \(A_9^3\)
05/11/2021 10 Lượt xem
Câu 4: Tính thể tích của khối tứ diện ABCD, biết AB,AC,AD đôi một vuông góc và lần lượt có độ dài bằng 2,4,3?
A. 24
B. 8
C. 4
D. 3
05/11/2021 9 Lượt xem
Câu 5: Cho hàm số f(x)>0 có đạo hàm liên tục trên \(\left[0, \frac{\pi}{3}\right]\) , đồng thời thỏa mãn \(f^{\prime}(0)=0 ; f(0)=1 \text { và } f^{\prime \prime}(x) \cdot f(x)+\left[\frac{f(x)}{\cos x}\right]^{2}=\left[f^{\prime}(x)\right]^{2}\). Tính \(T=f\left(\frac{\pi}{3}\right)\)
A. \(T=\frac{3}{4}\)
B. \(T=-\frac{\sqrt{3}}{2}\)
C. \( T=\frac{1}{2}\)
D. \(T=\frac{\sqrt{3}}{14}\)
05/11/2021 6 Lượt xem
Câu 6: Trên mặt phẳng tọa độ điểm biểu diễn của số phức z = 1 - 3i là điểm nào dưới đây?
A. Q(1;3)
B. P(1;-3)
C. N(-1;3)
D. M(-1;-3)
05/11/2021 6 Lượt xem
- 283 Lượt thi
- 90 Phút
- 50 Câu hỏi
- Học sinh
Chia sẻ:
Đăng Nhập để viết bình luận