Câu hỏi:
Cho hàm số y = f(x) xác định, liên tục trên R và có bảng biến thiên như sau:
Tìm giá trị cực đại yCĐ và giá trị cực tiểu yCT của hàm số đã cho
A. yCĐ = -2 và yCT = 2
B. yCĐ = 3 và yCT = 0
C. yCĐ = 2 và yCT = 0
D. yCĐ = 3 và yCT = -2
Câu 1: Tổng giá trị lớn nhất và giá trị nhỏ nhất của hàm số \(y = \sqrt {2 - {x^2}} - x\) bằng
A. \(2 + \sqrt 2 \)
B. 2
C. 1
D. \(2 - \sqrt 2 \)
05/11/2021 8 Lượt xem
Câu 2: Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a, cạnh bên \(SA \bot \left( {ABCD} \right)\) và \(SA = a\sqrt 3 \). Khoảng cách từ A đến mặt phẳng (SBC) bằng
A. \(\frac{{2a\sqrt 5 }}{5}\)
B. \(a\sqrt 3 \)
C. \(\frac{a}{2}\)
D. \(\frac{{a\sqrt 3 }}{2}\)
05/11/2021 7 Lượt xem
Câu 3: Cho hình hộp chữ nhật ABCD.A'B'C'D'. Gọi M là trung điểm của BB'. Mặt phẳng (MDC') chia khối hộp chữ nhật thành hai khối đa diện, một khối chứa đỉnh C và một khối chứa đỉnh A'. Gọi V1, V2 lần lượt là thể tích của hai khối đa diện chứa C và A'. Tính \(\frac{{{V_1}}}{{{V_2}}}.\)
A. \(\frac{{{V_1}}}{{{V_2}}} = \frac{7}{{24}}\)
B. \(\frac{{{V_1}}}{{{V_2}}} = \frac{7}{{17}}\)
C. \(\frac{{{V_1}}}{{{V_2}}} = \frac{7}{{12}}\)
D. \(\frac{{{V_1}}}{{{V_2}}} = \frac{17}{{24}}\)
05/11/2021 7 Lượt xem
Câu 4: Tìm tập xác định của hàm số \(y = {\log _{\frac{1}{2}}}\left( {{x^2} - 3x + 2} \right)\)
A. \(\left( { - \infty ;1} \right) \cup \left( {2; + \infty } \right)\)
B. (1;2)
C. \(\left( {2; + \infty } \right)\)
D. \(\left( { - \infty ;1} \right)\)
05/11/2021 8 Lượt xem
Câu 5: Trong không gian Oxyz, cho hai điểm A(1;2;3) và B(2;4;-1). Phương trình chính tắc của đường thẳng d đi qua A, B là
A. \(\frac{{x + 2}}{1} = \frac{{y + 4}}{2} = \frac{{z + 1}}{4}\)
B. \(\frac{{x + 1}}{1} = \frac{{y + 2}}{2} = \frac{{z + 3}}{4}\)
C. \(\frac{{x - 1}}{1} = \frac{{y - 2}}{2} = \frac{{z - 3}}{{ - 4}}\)
D. \(\frac{{x + 2}}{1} = \frac{{y + 4}}{2} = \frac{{z - 1}}{{ - 4}}\)
05/11/2021 9 Lượt xem
Câu 6: Trong không gian với hệ trục tọa độ Oxyz, cho đường thẳng \(d:\frac{{x - 1}}{1} = \frac{{y + 2}}{{ - 1}} = \frac{z}{2}\). Mặt phẳng (P) đi qua điểm M(2;0;-1) và vuông góc với d có phương trình là
A. x - y + 2z = 0
B. x - 2y - 2 = 0
C. x + y + 2z = 0
D. x - y - 2z = 0
05/11/2021 8 Lượt xem

Câu hỏi trong đề: Đề thi thử THPT QG năm 2021 môn Toán của Trường THPT Nam Sài Gòn
- 23 Lượt thi
- 90 Phút
- 50 Câu hỏi
- Học sinh
Cùng danh mục Thi THPT QG Môn Toán
- 1.8K
- 283
- 50
-
18 người đang thi
- 1.0K
- 121
- 50
-
65 người đang thi
- 899
- 75
- 50
-
40 người đang thi
- 714
- 35
- 50
-
23 người đang thi
Chia sẻ:
Đăng Nhập để viết bình luận