Câu hỏi:
Cho hàm số f(x) liên tục trên R thỏa mãn \(\int\limits_0^{\frac{\pi }{4}} {f\left( {\tan x} \right)} \,{\rm{d}}x = 4\) và \(\int\limits_0^1 {\frac{{{x^2}f\left( x \right)}}{{{x^2} + 1}}{\rm{d}}x} = 2\). Tính tích phân \(I = \int\limits_0^1 {f(x){\rm{d}}x} \)
A. 6
B. 2
C. 3
D. 1
Câu 1: Cho hàm số bậc bốn y = f(x) có đồ thị hàm số y = f'(x) như hình bên dưới. Gọi S là tập hợp tất cả các giá trị nguyên của tham số m thuộc [1;2020] để hàm số \(g\left( x \right) = f\left( {{x^4} - 2{x^2} + m} \right)\) có đúng 3 điểm cực trị. Tổng tất cả các phần tử của S là?
A. 2041200
B. 2041204
C. 2041195
D. 2041207
05/11/2021 9 Lượt xem
Câu 2: Cho hàm số \(y = m{x^3} + 3m{x^2} + 3x + 1\). Tìm tập hợp tất cả các số thực m để hàm số đồng biến trên R.
A. \(m \ge 1 \vee m \le 0.\)
B. \(0 \le m < 1\)
C. \(0 \le m \le 1.\)
D. \(0 < m \le 1.\)
05/11/2021 10 Lượt xem
05/11/2021 8 Lượt xem
05/11/2021 8 Lượt xem
05/11/2021 8 Lượt xem
Câu 6: Cho hai số phức \({z_1} = 3 - i\) và \({z_2} = - 1 + i\). Tính tổng phần thực và phần ảo của số phức \({z_1}\overline {{z_2}} \).
A. -4
B. -2
C. 2
D. -6
05/11/2021 8 Lượt xem
Câu hỏi trong đề: Đề thi thử THPT QG năm 2021 môn Toán của Trường THPT Lê Lai
- 120 Lượt thi
- 90 Phút
- 50 Câu hỏi
- Học sinh
Chia sẻ:
Đăng Nhập để viết bình luận