Câu hỏi:

Cho hàm số f(x) liên tục trên R thỏa mãn \(\int\limits_0^{\frac{\pi }{4}} {f\left( {\tan x} \right)} \,{\rm{d}}x = 4\) và \(\int\limits_0^1 {\frac{{{x^2}f\left( x \right)}}{{{x^2} + 1}}{\rm{d}}x} = 2\). Tính tích phân \(I = \int\limits_0^1 {f(x){\rm{d}}x} \)

500 Lượt xem
05/11/2021
3.2 9 Đánh giá

A. 6

B. 2

C. 3

D. 1

Đăng Nhập để xem đáp án
Câu hỏi khác cùng đề thi
Câu 1:

Đồ thị của hàm số nào dưới đây có dạng như đường cong trong hình bên?

A. \(y = \frac{{x - 2}}{{x - 1}}\)

B. \(y = \frac{{x - 2}}{{x + 1}}\)

C. \(y = \frac{{2x + 1}}{{x - 1}}\)

D. \(y = - {x^3} + 3x + 2\)

Xem đáp án

05/11/2021 8 Lượt xem

Câu 4:

Cho hàm số y = f(x) xác định trên R và có bảng biến thiên như sau:

Mệnh đề nào dưới đây đúng?

A. Hàm số f(x) đồng biến trên khoảng (-1;4)

B. Hàm số f(x) nghịch biến trên khoảng \(\left( { - \infty ; - 2} \right)\)

C. Hàm số f(x) nghịch biến trên khoảng (-2;2)

D. Hàm số f(x) đồng biến trên khoảng (0;2)

Xem đáp án

05/11/2021 9 Lượt xem

Xem đáp án

05/11/2021 10 Lượt xem

Câu 6:

Nghiệm của phương trình 2x = 4 là

A. x = 1

B. x = 2

C. x = 3

D. x = 4

Xem đáp án

05/11/2021 8 Lượt xem

Chưa có bình luận

Đăng Nhập để viết bình luận

Đề thi thử THPT QG năm 2021 môn Toán của Trường THPT Lê Lai
Thông tin thêm
  • 122 Lượt thi
  • 90 Phút
  • 50 Câu hỏi
  • Học sinh