Câu hỏi:
Trong không gian Oxyz, cho điểm A(2;-1;-3) và mặt phẳng (P): 3x - 2y + 4z - 5 = 0. Mặt phẳng (Q) đi qua A và song song với mặt phẳng (P) có phương trình là
A. 3x - 2y + 4z - 4 = 0
B. 3x + 2y + 4z + 8 = 0
C. 3x + 2y + 4z + 4 = 0
D. 3x - 2y + 4z + 4 = 0
Câu 1: Cho hình nón có thiết diện qua trục là tam giác vuông cân có cạnh huyền bằng \(2a\sqrt 2 \). Diện tích xung quanh của hình nón đã cho bằng
A. \(\sqrt 2 \pi {a^2}\)
B. \(2\sqrt 2 \pi {a^2}\)
C. \(4\pi {a^2}\)
D. \(4\sqrt 2 \pi {a^2}\)
05/11/2021 8 Lượt xem
Câu 2: Cho hình chóp S.ABCD có SA vuông góc với mặt phẳng (ABCD), \(SA = \frac{{a\sqrt 2 }}{2}\), đáy ABCD là hình thang vuông tại A và D có AB = 2AD = 2DC = a (Hình vẽ minh họa). Góc giữa hai mặt phẳng (SBC) và (ABCD) bằng
6184b974330b9.png)
6184b974330b9.png)
A. 60o
B. 90o
C. 30o
D. 45o
05/11/2021 8 Lượt xem
05/11/2021 8 Lượt xem
Câu 4: Cho cấp số nhân (un) có u1 = 3 công bội \(q = - \frac{1}{3}\). Tính u4.
A. \( - \frac{1}{{27}}\)
B. \( - \frac{1}{9}\)
C. \( \frac{1}{9}\)
D. \(- \frac{1}{27}\)
05/11/2021 7 Lượt xem
Câu 5: Cho hai số thực a, b thỏa mãn \(\frac{1}{3} < b < a < 1\) và biểu thức \(P = {\log _a}\left( {\frac{{3b - 1}}{{4{a^3}}}} \right) + 12\log _{\frac{b}{a}}^2a\) có giá trị nhỏ nhất. Tính \(\frac{b}{a}\).
A. \(\frac{1}{{\sqrt[3]{4}}}\)
B. \(\frac{1}{{2\sqrt[3]{2}}}\)
C. \(\frac{1}{{\sqrt[3]{2}}}\)
D. 2
05/11/2021 8 Lượt xem
05/11/2021 7 Lượt xem

Câu hỏi trong đề: Đề thi thử THPT QG năm 2021 môn Toán của Trường THPT Lê Lai
- 122 Lượt thi
- 90 Phút
- 50 Câu hỏi
- Học sinh
Cùng danh mục Thi THPT QG Môn Toán
- 2.1K
- 285
- 50
-
86 người đang thi
- 1.1K
- 75
- 50
-
44 người đang thi
- 941
- 35
- 50
-
85 người đang thi
- 826
- 31
- 50
-
48 người đang thi
Chia sẻ:
Đăng Nhập để viết bình luận