Câu hỏi:

Xét \(\int\limits_{ - 1}^1 {{x^2}\sqrt {{{\left( {2 + {x^3}} \right)}^5}} dx} \), nếu đặt \(u = 2 + {x^3}\) thì \(\int\limits_{ - 1}^1 {{x^2}\sqrt {{{\left( {2 + {x^3}} \right)}^5}} dx} \) bằng

345 Lượt xem
05/11/2021
3.8 8 Đánh giá

A. \(\int\limits_{ - 1}^1 {\sqrt {{u^5}} du} \)

B. \(\frac{1}{3}\int\limits_{ - 1}^1 {\sqrt {{u^5}} du} \)

C. \(\int\limits_1^3 {\sqrt {{u^5}} du} \)

D. \(\frac{1}{3}\int\limits_1^3 {\sqrt {{u^5}} du} \)

Đăng Nhập để xem đáp án
Câu hỏi khác cùng đề thi
Câu 1:

Trong không gian Oxyz, cho mặt cầu \(\left( S \right):{x^2} + {y^2} + {z^2} - 4x + 8y - 2z - 4 = 0\). Tâm và bán kính của mặt cầu (S) lần lượt là 

A. \(I\left( {2; - 4;1} \right),R = 5\)

B. \(I\left( { - 2;4; - 1} \right),R = 25\)

C. \(I\left( {2; - 4;1} \right),R = \sqrt {21} \)

D. \(I\left( { - 2;4; - 1} \right),R = 21\)

Xem đáp án

05/11/2021 9 Lượt xem

Câu 3:

Cho hai số phức \({z_1} = 1 + 2i,{z_2} = 3 - i\). Tìm số phức \(z = \frac{{{z_2}}}{{{z_1}}}\).

A. \(z = \frac{1}{{10}} + \frac{7}{{10}}i\)

B. \(z = \frac{1}{5} + \frac{7}{5}i\)

C. \(z = \frac{1}{5} - \frac{7}{5}i\)

D. \(z = - \frac{1}{{10}} + \frac{7}{{10}}i\)

Xem đáp án

05/11/2021 8 Lượt xem

Chưa có bình luận

Đăng Nhập để viết bình luận

Đề thi thử THPT QG năm 2021 môn Toán của Trường THPT Lê Lai
Thông tin thêm
  • 122 Lượt thi
  • 90 Phút
  • 50 Câu hỏi
  • Học sinh