Câu hỏi:
Xét \(\int\limits_{ - 1}^1 {{x^2}\sqrt {{{\left( {2 + {x^3}} \right)}^5}} dx} \), nếu đặt \(u = 2 + {x^3}\) thì \(\int\limits_{ - 1}^1 {{x^2}\sqrt {{{\left( {2 + {x^3}} \right)}^5}} dx} \) bằng
A. \(\int\limits_{ - 1}^1 {\sqrt {{u^5}} du} \)
B. \(\frac{1}{3}\int\limits_{ - 1}^1 {\sqrt {{u^5}} du} \)
C. \(\int\limits_1^3 {\sqrt {{u^5}} du} \)
D. \(\frac{1}{3}\int\limits_1^3 {\sqrt {{u^5}} du} \)
Câu 1: Cho hàm số bậc bốn y = f(x) có đồ thị hàm số y = f'(x) như hình bên dưới. Gọi S là tập hợp tất cả các giá trị nguyên của tham số m thuộc [1;2020] để hàm số \(g\left( x \right) = f\left( {{x^4} - 2{x^2} + m} \right)\) có đúng 3 điểm cực trị. Tổng tất cả các phần tử của S là?
6184b97495293.png)
6184b97495293.png)
A. 2041200
B. 2041204
C. 2041195
D. 2041207
05/11/2021 9 Lượt xem
05/11/2021 7 Lượt xem
Câu 3: Cho hai số thực a, b thỏa mãn \(\frac{1}{3} < b < a < 1\) và biểu thức \(P = {\log _a}\left( {\frac{{3b - 1}}{{4{a^3}}}} \right) + 12\log _{\frac{b}{a}}^2a\) có giá trị nhỏ nhất. Tính \(\frac{b}{a}\).
A. \(\frac{1}{{\sqrt[3]{4}}}\)
B. \(\frac{1}{{2\sqrt[3]{2}}}\)
C. \(\frac{1}{{\sqrt[3]{2}}}\)
D. 2
05/11/2021 8 Lượt xem
05/11/2021 7 Lượt xem
Câu 5: Tập xác định của hàm số \(y = {\log _{\frac{1}{2}}}\left( {{x^2} - 3x + 2} \right)\) là.
A. \(\left( { - \infty ;\,1} \right) \cup \left( {2;\, + \infty } \right)\)
B. (1;2)
C. \(\left( {2;\, + \infty } \right)\)
D. \(\left( { - \infty ;\,1} \right)\)
05/11/2021 7 Lượt xem
Câu 6: Với a là một số thực dương tùy ý, \({\log _2}\left( {8{a^3}} \right)\) bằng
A. \(\frac{3}{2}{\log _2}a\)
B. \(\frac{1}{3}{\log _2}a\)
C. \(3 + 3{\log _2}a\)
D. \(3{\log _2}a\)
05/11/2021 8 Lượt xem

Câu hỏi trong đề: Đề thi thử THPT QG năm 2021 môn Toán của Trường THPT Lê Lai
- 122 Lượt thi
- 90 Phút
- 50 Câu hỏi
- Học sinh
Cùng danh mục Thi THPT QG Môn Toán
- 2.0K
- 284
- 50
-
77 người đang thi
- 1.1K
- 75
- 50
-
31 người đang thi
- 868
- 35
- 50
-
96 người đang thi
- 750
- 31
- 50
-
59 người đang thi
Chia sẻ:
Đăng Nhập để viết bình luận