Câu hỏi:

Số nghiệm nguyên của bất phương trình \({\log _{\frac{1}{2}}}\left( {x - 3} \right) \ge {\log _{\frac{1}{2}}}4\) là

496 Lượt xem
05/11/2021
3.1 7 Đánh giá

A. 2

B. 3

C. 1

D. 4

Đăng Nhập để xem đáp án
Câu hỏi khác cùng đề thi
Câu 1:

Trong không gian Oxyz, cho mặt phẳng (P): 3x - 4z + 2 = 0. Véc tơ nào dưới đây là một véc tơ pháp tuyến của mặt phẳng (P)?

A. \(\overrightarrow {{n_1}} = \left( {3\,; - 4;\,2} \right)\)

B. \(\overrightarrow {{n_2}} = \left( { - 3;0;4} \right)\)

C. \(\overrightarrow {{n_3}} = \left( {3; - 4;0} \right)\)

D. \(\overrightarrow {{n_4}} = \left( {4\,;0\,; - 3} \right)\)

Xem đáp án

05/11/2021 12 Lượt xem

Câu 2:

Cho cấp số nhân (un) có u1 = 3 công bội \(q = - \frac{1}{3}\). Tính u4.

A. \( - \frac{1}{{27}}\)

B. \( - \frac{1}{9}\)

C. \( \frac{1}{9}\)

D. \(- \frac{1}{27}\)

Xem đáp án

05/11/2021 7 Lượt xem

Câu 3:

Diện tích S của hình phẳng giới hạn bởi các đường \(y = 2{x^2} + 3x + 1\,,\,y = {x^3} + 1\,\) được tính bởi công thức nào dưới đây ?

A. \(S = \pi \int\limits_{ - 1}^3 {{{\left( {{x^3} - 2{x^2} - 3x} \right)}^2}dx} \)

B. \(S = \int\limits_{ - 1}^3 {\left( {{x^3} - 2{x^2} - 3x} \right)dx} \)

C. \(S = \int\limits_{ - 1}^0 {\left( {{x^3} - 2{x^2} - 3x} \right)dx} + \int\limits_0^3 {\left( {2{x^2} + 3x - {x^3}} \right)dx} \)

D. \(S = \int\limits_{ - 1}^0 {\left( {2{x^2} + 3x - {x^3}} \right)dx} + \int\limits_0^3 {\left( {{x^3} - 2{x^2} - 3x} \right)dx} \)

Xem đáp án

05/11/2021 10 Lượt xem

Câu 6:

Cho hàm số y = f(x) xác định trên R và có bảng biến thiên như sau:

Mệnh đề nào dưới đây đúng?

A. Hàm số f(x) đồng biến trên khoảng (-1;4)

B. Hàm số f(x) nghịch biến trên khoảng \(\left( { - \infty ; - 2} \right)\)

C. Hàm số f(x) nghịch biến trên khoảng (-2;2)

D. Hàm số f(x) đồng biến trên khoảng (0;2)

Xem đáp án

05/11/2021 9 Lượt xem

Chưa có bình luận

Đăng Nhập để viết bình luận

Đề thi thử THPT QG năm 2021 môn Toán của Trường THPT Lê Lai
Thông tin thêm
  • 122 Lượt thi
  • 90 Phút
  • 50 Câu hỏi
  • Học sinh