Câu hỏi: Cho \(A = \left[ {\begin{array}{*{20}{c}} 1&2&1\\ 2&5&2\\ 3&7&4 \end{array}} \right]\) và M là tập tất cả các phần tử của A-1. Khẳng định nào sau đây đúng?
A. \(\left\{ { - 1,0,2} \right\} \subset M\)
B. \(\left\{ {6,-2,2} \right\} \subset M\)
C. \(\left\{ { 6,-1,0} \right\} \subset M\)
D. \(\left\{ {6,1,3} \right\} \subset M\)
Câu 1: Cho \(A \in {M_{3 \times 4}}\left[ R \right]\) . Sử dụng phép hai phép biến đổi sơ cấp theo liên tiếp: cộng vào cột thứ 3, cột 2 đã được nhân với số 2 và đổi chỗ cột 1 cho cột 2. Phép biến đổi trên tương đương với nhân bên phải ma trận A cho ma trận nào sau đây.
A. \(\left[ {\begin{array}{*{20}{c}} 1&0&0\\ 2&1&0\\ 0&0&1 \end{array}} \right]\)
B. \(\left[ {\begin{array}{*{20}{c}} 1&0&0\\ 0&0&1\\ 0&1&2 \end{array}} \right]\)
C. \(\left[ {\begin{array}{*{20}{c}} 1&0&0\\ 0&2&1\\ 0&1&0 \end{array}} \right]\)
D. 3 câu kia đều sai
30/08/2021 0 Lượt xem
Câu 2: Cho \(A = \left[ {\begin{array}{*{20}{c}} 1&0&0&3\\ 2&3&0&4\\ 4&{ - 2}&5&6\\ { - 1}&{k + 1}&4&{k + 5} \end{array}} \right]\) . Với giá trị nào của k thì \(r(A) \ge 3\)
A. k = −5.
B. \(\forall k\)
C. Không tồn tại k
D. k = −1
30/08/2021 0 Lượt xem
Câu 3: Cho \(z = \cos \left( {\frac{{2\pi }}{n}} \right) - i\sin \left( {\frac{{2\pi }}{n}} \right)\) là một nghiệm của \(\sqrt[n]{1}\) . Ma trận vuông Fn = ( fk,j ) cấp n, với fk,j=z(k−1).(j−1) được gọi là ma trận Fourier. Phép nhân Fn . X được gọi là phép biến đổi Fourier. Tìm biến đổi Fourier của vecto X = ( 2, −1 )T
A. X = (3, 2 )T
B. X = (1, 3)T
C. X = (2, 1)T
D. 3 câu kia đều sai
30/08/2021 0 Lượt xem
Câu 4: Cho \(z = \cos \left( {\frac{{2\pi }}{n}} \right) - i\sin \left( {\frac{{2\pi }}{n}} \right)\) là một nghiệm của \(\sqrt[n]{1}\) . Ma trận vuông \({F_n} = ({f_{k,j}})\) cấp n, với \({f_{k,j}} = {z^{(k - 1).(j - 1)}}\) được gọi là ma trận Fourier. Phép nhân Fn . X được gọi là phép biến đổi Fourier. Tìm biến đổi Fourier của vecto X = (1,2,0)T.
A. \(X = {(3,\frac{{\sqrt 3 }}{2} + i\frac{1}{2},\frac{{\sqrt 3 }}{2} + i\frac{1}{2})^T}\)
B. Ba câu kia đều sai
C. \(X = {(3,\frac{1}{2} - i\frac{{\sqrt 3 }}{2},\frac{1}{2} + i\frac{{\sqrt 3 }}{2})^T}\)
D. \(X = {(3,-\frac{1}{2} - i\frac{{\sqrt 3 }}{2},\frac{1}{2} + i\frac{{\sqrt 3 }}{2})^T}\)
30/08/2021 0 Lượt xem
Câu 5: Cho ma trận \(A = \left[ {\begin{array}{*{20}{c}} { - 2}&1&1\\ { - 3}&1&2\\ { - 2}&1&1 \end{array}} \right]\) . Tìm số tự nhiên n nhỏ nhất sao cho \(r({A^n}) = 0\)
A. Các câu kia sai
B. n = 2
C. n = 4
D. n = 3
30/08/2021 0 Lượt xem
Câu 6: Cho \(z = \cos \left( {\frac{{2\pi }}{n}} \right) - i\sin \left( {\frac{{2\pi }}{n}} \right)\) là một nghiệm của \(\sqrt[n]{1}\) . Ma trận vuông \({A} = ({f_{k,j}})\) cấp n, với \({a_{k,j}} = {z^{(k - 1).(j - 1)}}\) được gọi là ma trận Fourier. Phép nhân Fn . X được gọi là phép biến đổi Fourier. Tìm biến đổi Fourier cấp 3.
A. \(A = \left( {\begin{array}{*{20}{c}} 1&1&1\\ 1&{ - 1}&{ - 1}\\ 1&1&z \end{array}} \right)\)
B. \(A = \left( {\begin{array}{*{20}{c}} 1&1&1\\ 1&{ - 1}&1\\ 1&{{z^2}}&z \end{array}} \right)\)
C. Ba câu kia đều sai
D. \(A = \left( {\begin{array}{*{20}{c}} 1&1&1\\ 1&z&{{z^2}}\\ 1&{{z^2}}&z \end{array}} \right)\)
30/08/2021 0 Lượt xem

Câu hỏi trong đề: Bộ câu hỏi trắc nghiệm môn Đại số tuyến tính - Phần 6
- 3 Lượt thi
- 45 Phút
- 25 Câu hỏi
- Sinh viên
Cùng chủ đề Bộ câu hỏi trắc nghiệm môn Đại số tuyến tính có đáp án
- 1.1K
- 66
- 25
-
57 người đang thi
- 570
- 18
- 25
-
66 người đang thi
- 479
- 15
- 25
-
59 người đang thi
- 408
- 10
- 25
-
42 người đang thi
Chia sẻ:
Đăng Nhập để viết bình luận