Câu hỏi: Cho vecto đơn vị \(u = \left( {\frac{1}{3},\frac{{ - 2}}{3},\frac{2}{3}} \right)\) . Đặt I-2.u.uT, vecto X=(1, −2, 1)T. Tính (I−2.u.uT).X. Phép biến đổi (I-2.u.uT) là phép đối xứng của vecto X qua mặt phẳng P là mặt phẳng qua gốc O nhận u làm vecto pháp tuyến. Phép biến đổi (I-2.u.uT) được gọi là phép biến đổi Householder.

189 Lượt xem
30/08/2021
3.4 9 Đánh giá

A. \(\left( \begin{array}{l} 19/9\\ 2/9\\ - 7/9 \end{array} \right)\)

B. \(\left( \begin{array}{l} 17/9\\ 4/9\\ 8/9 \end{array} \right)\)

C. \(\left( \begin{array}{l} 19/9\\ -2/9\\ 11/9 \end{array} \right)\)

D. Các câu kia sai

Đăng Nhập để xem đáp án
Câu hỏi khác cùng đề thi
Câu 1: Cho \(A \in {M_{3 \times 4}}\left[ R \right]\) . Sử dụng phép hai phép biến đổi sơ cấp theo liên tiếp: cộng vào cột thứ 3, cột 2 đã được nhân với số 2 và đổi chỗ cột 1 cho cột 2. Phép biến đổi trên tương đương với nhân bên phải ma trận A cho ma trận nào sau đây.

A. \(\left[ {\begin{array}{*{20}{c}} 1&0&0\\ 2&1&0\\ 0&0&1 \end{array}} \right]\)

B. \(\left[ {\begin{array}{*{20}{c}} 1&0&0\\ 0&0&1\\ 0&1&2 \end{array}} \right]\)

C. \(\left[ {\begin{array}{*{20}{c}} 1&0&0\\ 0&2&1\\ 0&1&0 \end{array}} \right]\)

D. 3 câu kia đều sai

Xem đáp án

30/08/2021 0 Lượt xem

Câu 2: Cho ma trận \(A = \left[ {\begin{array}{*{20}{c}} 2&6\\ 0&2 \end{array}} \right]\) . Tính A100.

A. \(\left[ {\begin{array}{*{20}{c}} {{2^{100}}}&{300}\\ 0&{{2^{100}}} \end{array}} \right]\)

B. Các câu kia sai

C. \({2^{100}}\left[ {\begin{array}{*{20}{c}} 1&{100}\\ 0&1 \end{array}} \right]\)

D. \({2^{100}}\left[ {\begin{array}{*{20}{c}} 1&{300}\\ 0&1 \end{array}} \right]\)

Xem đáp án

30/08/2021 0 Lượt xem

Câu 3: Tính hạng của ma trận:

A. r( A) = 4.

B. r( A) = 3.

C. r( A) = 5.

D. r( A) = 2.

Xem đáp án

30/08/2021 0 Lượt xem

Chưa có bình luận

Đăng Nhập để viết bình luận

Bộ câu hỏi trắc nghiệm môn Đại số tuyến tính - Phần 6
Thông tin thêm
  • 3 Lượt thi
  • 45 Phút
  • 25 Câu hỏi
  • Sinh viên