Câu hỏi:
Cho \(A = \left[ {\begin{array}{*{20}{c}} {\cos \frac{\pi }{6}}&{ - \sin \frac{\pi }{6}}\\ {\sin \frac{\pi }{6}}&{\cos \frac{\pi }{6}} \end{array}} \right],X = \in {M_{2 \times 1}}\left[ R \right]\) . Thực hiện phép nhân AX, ta thấy:
A. Vecto X quay ngược chiều kim đồng hồ một góc bằng \({\frac{\pi }{6}}\)
B. Vecto X quay cùng chiều kim đồng hồ một góc bằng \({\frac{\pi }{3}}\)
C. Vecto X quay cùng chiều kim đồng hồ một góc bằng \({\frac{\pi }{6}}\)
D. Ba câu kia đều sai
Câu 1: Cho \(z = \cos \left( {\frac{{2\pi }}{n}} \right) - i\sin \left( {\frac{{2\pi }}{n}} \right)\) là một nghiệm của \(\sqrt[n]{1}\) . Ma trận vuông \({F_n} = ({f_{k,j}})\) cấp n, với \({f_{k,j}} = {z^{(k - 1).(j - 1)}}\) được gọi là ma trận Fourier. Phép nhân Fn . X được gọi là phép biến đổi Fourier. Tìm biến đổi Fourier của vecto X = (1,0,1,1)T.
A. Ba câu kia đều sai
B. X = ( 4, −i, 1, i)T
C. X = ( 3, i, 1, −i)T
D. X = ( 3, −i, 1, i)T
30/08/2021 0 Lượt xem
Câu 2: Cho \(z = \cos \left( {\frac{{2\pi }}{n}} \right) - i\sin \left( {\frac{{2\pi }}{n}} \right)\) là một nghiệm của \(\sqrt[n]{1}\) . Ma trận vuông \({A} = ({f_{k,j}})\) cấp n, với \({a_{k,j}} = {z^{(k - 1).(j - 1)}}\) được gọi là ma trận Fourier. Phép nhân Fn . X được gọi là phép biến đổi Fourier. Tìm biến đổi Fourier cấp 3.
A. \(A = \left( {\begin{array}{*{20}{c}} 1&1&1\\ 1&{ - 1}&{ - 1}\\ 1&1&z \end{array}} \right)\)
B. \(A = \left( {\begin{array}{*{20}{c}} 1&1&1\\ 1&{ - 1}&1\\ 1&{{z^2}}&z \end{array}} \right)\)
C. Ba câu kia đều sai
D. \(A = \left( {\begin{array}{*{20}{c}} 1&1&1\\ 1&z&{{z^2}}\\ 1&{{z^2}}&z \end{array}} \right)\)
30/08/2021 0 Lượt xem
Câu 3: Cho \(A \in {M_{3 \times 4}}\left[ {{\rm{ }}R{\rm{ }}} \right]\) . Sử dụng phép biến đổi sơ cấp: Cộng vào hàng thứ 3, hàng 1 đã được nhân với số 2. Phép biến đổi trên tương đương với nhân bên trái ma trận A cho ma trận nào sau đây.
A. 3 câu kia đều sai
B. \(\left[ {\begin{array}{*{20}{c}} 1&0&0\\ 0&1&0\\ 2&0&1 \end{array}} \right]\)
C. \(\left[ {\begin{array}{*{20}{c}} 1&0&0\\ 2&0&1\\ 0&1&0 \end{array}} \right]\)
D. \(\left[ {\begin{array}{*{20}{c}} 1&0&0\\ 0&1&0\\ { - 2}&1&1 \end{array}} \right]\)
30/08/2021 0 Lượt xem
Câu 4: Cho ma trận \(A = \left( {\begin{array}{*{20}{c}} { - 2}&0&{ - 4}\\ 4&2&4\\ 3&2&2 \end{array}} \right)\) . Số nguyên dương k nhỏ nhất thỏa \(r({A^k}) = r({A^{k + 1}})\) gọi là chỉ số của ma trận A. Tìm chỉ số của ma trận A.
A. k = 2
B. k = 1
C. Các câu kia sai
D. k = 3
30/08/2021 0 Lượt xem
Câu 5: Cho \(z = \cos \left( {\frac{{2\pi }}{n}} \right) - i\sin \left( {\frac{{2\pi }}{n}} \right)\) là một nghiệm của \(\sqrt[n]{1}\) . Ma trận vuông Fn = ( fk,j ) cấp n, với fk,j=z(k−1).(j−1) được gọi là ma trận Fourier. Phép nhân Fn . X được gọi là phép biến đổi Fourier. Tìm biến đổi Fourier của vecto X = ( 2, −1 )T
A. X = (3, 2 )T
B. X = (1, 3)T
C. X = (2, 1)T
D. 3 câu kia đều sai
30/08/2021 0 Lượt xem
Câu 6: Cho \(A \in {M_{3 \times 4}}\left[ R \right]\) . Sử dụng phép hai phép biến đổi sơ cấp theo liên tiếp: cộng vào cột thứ 3, cột 2 đã được nhân với số 2 và đổi chỗ cột 1 cho cột 2. Phép biến đổi trên tương đương với nhân bên phải ma trận A cho ma trận nào sau đây.
A. \(\left[ {\begin{array}{*{20}{c}} 1&0&0\\ 2&1&0\\ 0&0&1 \end{array}} \right]\)
B. \(\left[ {\begin{array}{*{20}{c}} 1&0&0\\ 0&0&1\\ 0&1&2 \end{array}} \right]\)
C. \(\left[ {\begin{array}{*{20}{c}} 1&0&0\\ 0&2&1\\ 0&1&0 \end{array}} \right]\)
D. 3 câu kia đều sai
30/08/2021 0 Lượt xem
Câu hỏi trong đề: Bộ câu hỏi trắc nghiệm môn Đại số tuyến tính - Phần 6
- 3 Lượt thi
- 45 Phút
- 25 Câu hỏi
- Sinh viên
Cùng chủ đề Bộ câu hỏi trắc nghiệm môn Đại số tuyến tính có đáp án
- 1.1K
- 66
- 25
-
31 người đang thi
- 584
- 18
- 25
-
38 người đang thi
- 495
- 15
- 25
-
82 người đang thi
- 420
- 10
- 25
-
58 người đang thi
Chia sẻ:
Đăng Nhập để viết bình luận