Câu hỏi:
Cho \(A = \left[ {\begin{array}{*{20}{c}} {\cos \frac{\pi }{6}}&{ - \sin \frac{\pi }{6}}\\ {\sin \frac{\pi }{6}}&{\cos \frac{\pi }{6}} \end{array}} \right],X = \in {M_{2 \times 1}}\left[ R \right]\) . Thực hiện phép nhân AX, ta thấy:
A. Vecto X quay ngược chiều kim đồng hồ một góc bằng \({\frac{\pi }{6}}\)
B. Vecto X quay cùng chiều kim đồng hồ một góc bằng \({\frac{\pi }{3}}\)
C. Vecto X quay cùng chiều kim đồng hồ một góc bằng \({\frac{\pi }{6}}\)
D. Ba câu kia đều sai
Câu 1: Cho \(A = \left[ {\begin{array}{*{20}{c}} 1&0&0&3\\ 2&3&0&4\\ 4&{ - 2}&5&6\\ { - 1}&{k + 1}&4&{k + 5} \end{array}} \right]\) . Với giá trị nào của k thì \(r(A) \ge 3\)
A. k = −5.
B. \(\forall k\)
C. Không tồn tại k
D. k = −1
30/08/2021 0 Lượt xem
Câu 2: Cho vecto đơn vị \(u = \left( {\frac{1}{3},\frac{{ - 2}}{3},\frac{2}{3}} \right)\) . Đặt I-2.u.uT, vecto X=(1, −2, 1)T. Tính (I−2.u.uT).X. Phép biến đổi (I-2.u.uT) là phép đối xứng của vecto X qua mặt phẳng P là mặt phẳng qua gốc O nhận u làm vecto pháp tuyến. Phép biến đổi (I-2.u.uT) được gọi là phép biến đổi Householder.
A. \(\left( \begin{array}{l} 19/9\\ 2/9\\ - 7/9 \end{array} \right)\)
B. \(\left( \begin{array}{l} 17/9\\ 4/9\\ 8/9 \end{array} \right)\)
C. \(\left( \begin{array}{l} 19/9\\ -2/9\\ 11/9 \end{array} \right)\)
D. Các câu kia sai
30/08/2021 0 Lượt xem
Câu 3: Tổng tất cả các phần tử trên đường chéo gọi là vết của ma trận. Vết của ma trận AT.A là chuẩn Frobenius của ma trận A. Tìm chuẩn Frobenius của ma trận \(A = \left( {\begin{array}{*{20}{c}} 1&2&{ - 1}\\ 2&3&5\\ 4&1&6 \end{array}} \right).\)
A. Các câu kia sai
B. 27
C. 35
D. 97
30/08/2021 0 Lượt xem
Câu 4: Cho \(z = \cos \left( {\frac{{2\pi }}{n}} \right) - i\sin \left( {\frac{{2\pi }}{n}} \right)\) là một nghiệm của \(\sqrt[n]{1}\) . Ma trận vuông \({A} = ({f_{k,j}})\) cấp n, với \({a_{k,j}} = {z^{(k - 1).(j - 1)}}\) được gọi là ma trận Fourier. Phép nhân Fn . X được gọi là phép biến đổi Fourier. Tìm biến đổi Fourier cấp 3.
A. \(A = \left( {\begin{array}{*{20}{c}} 1&1&1\\ 1&{ - 1}&{ - 1}\\ 1&1&z \end{array}} \right)\)
B. \(A = \left( {\begin{array}{*{20}{c}} 1&1&1\\ 1&{ - 1}&1\\ 1&{{z^2}}&z \end{array}} \right)\)
C. Ba câu kia đều sai
D. \(A = \left( {\begin{array}{*{20}{c}} 1&1&1\\ 1&z&{{z^2}}\\ 1&{{z^2}}&z \end{array}} \right)\)
30/08/2021 0 Lượt xem
Câu 5: Cho ma trận \(A = \left[ {\begin{array}{*{20}{c}} { - 2}&1&1\\ { - 3}&1&2\\ { - 2}&1&1 \end{array}} \right]\) . Tìm số tự nhiên n nhỏ nhất sao cho \(r({A^n}) = 0\)
A. Các câu kia sai
B. n = 2
C. n = 4
D. n = 3
30/08/2021 0 Lượt xem
Câu 6: Cho \(z = \cos \left( {\frac{{2\pi }}{n}} \right) - i\sin \left( {\frac{{2\pi }}{n}} \right)\) là một nghiệm của \(\sqrt[n]{1}\) . Ma trận vuông \({F_n} = ({f_{k,j}})\) cấp n, với \({f_{k,j}} = {z^{(k - 1).(j - 1)}}\) được gọi là ma trận Fourier. Phép nhân Fn . X được gọi là phép biến đổi Fourier. Tìm biến đổi Fourier của vecto X = (1,0,1,1)T.
A. Ba câu kia đều sai
B. X = ( 4, −i, 1, i)T
C. X = ( 3, i, 1, −i)T
D. X = ( 3, −i, 1, i)T
30/08/2021 0 Lượt xem

Câu hỏi trong đề: Bộ câu hỏi trắc nghiệm môn Đại số tuyến tính - Phần 6
- 3 Lượt thi
- 45 Phút
- 25 Câu hỏi
- Sinh viên
Cùng chủ đề Bộ câu hỏi trắc nghiệm môn Đại số tuyến tính có đáp án
- 990
- 66
- 25
-
83 người đang thi
- 523
- 18
- 25
-
65 người đang thi
- 436
- 15
- 25
-
96 người đang thi
- 368
- 10
- 25
-
49 người đang thi
Chia sẻ:
Đăng Nhập để viết bình luận