Câu hỏi: 1- chuẩn của ma trận là số lớn nhất trong tổng trị tuyệt đối của từng cột. Tìm 1- chuẩn của ma trận AB với \(A = \left( {\begin{array}{*{20}{c}} 1&2&{ - 1}\\ 2&3&2\\ { - 3}&1&4 \end{array}} \right)\) với \(B = \left( {\begin{array}{*{20}{c}} 2&{ - 1}&3\\ { - 1}&4&0\\ 3&{ - 1}&2 \end{array}} \right)\)
A. 13
B. 15
C. Các câu kia sai
D. 19
Câu 1: Cho ma trận \(A = \left( {\begin{array}{*{20}{c}} { - 2}&0&{ - 4}\\ 4&2&4\\ 3&2&2 \end{array}} \right)\) . Số nguyên dương k nhỏ nhất thỏa \(r({A^k}) = r({A^{k + 1}})\) gọi là chỉ số của ma trận A. Tìm chỉ số của ma trận A.
A. k = 2
B. k = 1
C. Các câu kia sai
D. k = 3
30/08/2021 0 Lượt xem
Câu 2: Cho ma trận \(A = \left( {\begin{array}{*{20}{c}} { - 2}&1&1\\ { - 3}&1&2\\ { - 2}&1&1 \end{array}} \right)\) . Ma trận A gọi là ma trận lũy linh nếu Ak = 0. Số nguyên dương k nhỏ nhất thỏa Ak = 0 được gọi là chỉ số của ma trận lũy linh. Tìm chỉ số của ma trận A.
A. 3 câu kia đều sai
B. k = 2.
C. k = 3.
D. k = 4.
30/08/2021 0 Lượt xem
Câu 3: 1- chuẩn của ma trận A là số lớn nhất trong tổng trị tuyệt đối của từng cột. Tìm 1- chuẩn của ma trận \(A = \left( {\begin{array}{*{20}{c}} 5&{ - 1}&2\\ 3&7&1\\ 2&{ - 5}&4 \end{array}} \right).\)
A. 13
B. 10
C. Các câu kia sai
D. 7
30/08/2021 0 Lượt xem
Câu 4: Tính hạng của ma trận: \(A = \left[ {\begin{array}{*{20}{c}} 3&2&4&6&5\\ 2&1&3&5&4\\ 4&5&3&6&7\\ 4&5&3&7&8 \end{array}} \right]\)
A. r( A) = 3.
B. r( A) = 2.
C. r( A) = 4.
D. r( A) = 5.
30/08/2021 0 Lượt xem
Câu 5: Cho vecto đơn vị \(u = \left( {\frac{1}{3},\frac{{ - 2}}{3},\frac{2}{3}} \right)\) . Đặt I-2.u.uT, vecto X=(1, −2, 1)T. Tính (I−2.u.uT).X. Phép biến đổi (I-2.u.uT) là phép đối xứng của vecto X qua mặt phẳng P là mặt phẳng qua gốc O nhận u làm vecto pháp tuyến. Phép biến đổi (I-2.u.uT) được gọi là phép biến đổi Householder.
A. \(\left( \begin{array}{l} 19/9\\ 2/9\\ - 7/9 \end{array} \right)\)
B. \(\left( \begin{array}{l} 17/9\\ 4/9\\ 8/9 \end{array} \right)\)
C. \(\left( \begin{array}{l} 19/9\\ -2/9\\ 11/9 \end{array} \right)\)
D. Các câu kia sai
30/08/2021 0 Lượt xem
Câu 6: Cho \(A = \left[ {\begin{array}{*{20}{c}} 1&0&0&3\\ 2&3&0&4\\ 4&{ - 2}&5&6\\ { - 1}&{k + 1}&4&{k + 5} \end{array}} \right]\) . Với giá trị nào của k thì \(r(A) \ge 3\)
A. k = −5.
B. \(\forall k\)
C. Không tồn tại k
D. k = −1
30/08/2021 0 Lượt xem

Câu hỏi trong đề: Bộ câu hỏi trắc nghiệm môn Đại số tuyến tính - Phần 6
- 3 Lượt thi
- 45 Phút
- 25 Câu hỏi
- Sinh viên
Cùng chủ đề Bộ câu hỏi trắc nghiệm môn Đại số tuyến tính có đáp án
- 1.0K
- 66
- 25
-
78 người đang thi
- 562
- 18
- 25
-
10 người đang thi
- 472
- 15
- 25
-
17 người đang thi
- 399
- 10
- 25
-
80 người đang thi
Chia sẻ:
Đăng Nhập để viết bình luận