Câu hỏi: Cho \(A = \left[ {\begin{array}{*{20}{c}} 1&2&k&2\\ 2&3&1&k\\ 3&5&{2k}&k \end{array}} \right]\) với giá trị nào của k thì hạng của ma trận A bằng 3?

216 Lượt xem
30/08/2021
3.2 9 Đánh giá

A. \(\not \exists k\)

B. k = 1

C. \(k \ne 1\)

D. \(\forall k\)

Đăng Nhập để xem đáp án
Câu hỏi khác cùng đề thi
Câu 4: Cho \(A \in {M_{3 \times 4}}\left[ {{\rm{ }}R{\rm{ }}} \right]\) . Sử dụng phép biến đổi sơ cấp: Cộng vào hàng thứ 3, hàng 1 đã được nhân với số 2. Phép biến đổi trên tương đương với nhân bên trái ma trận A cho ma trận nào sau đây.

A. 3 câu kia đều sai

B. \(\left[ {\begin{array}{*{20}{c}} 1&0&0\\ 0&1&0\\ 2&0&1 \end{array}} \right]\)

C. \(\left[ {\begin{array}{*{20}{c}} 1&0&0\\ 2&0&1\\ 0&1&0 \end{array}} \right]\)

D. \(\left[ {\begin{array}{*{20}{c}} 1&0&0\\ 0&1&0\\ { - 2}&1&1 \end{array}} \right]\)

Xem đáp án

30/08/2021 0 Lượt xem

Chưa có bình luận

Đăng Nhập để viết bình luận

Bộ câu hỏi trắc nghiệm môn Đại số tuyến tính - Phần 6
Thông tin thêm
  • 3 Lượt thi
  • 45 Phút
  • 25 Câu hỏi
  • Sinh viên