Câu hỏi: Tổng tất cả các phần tử trên đường chéo gọi là vết của ma trận. Vết của ma trận AT.A là chuẩn Frobenius của ma trận A. Tìm chuẩn Frobenius của ma trận \(A = \left( {\begin{array}{*{20}{c}} 3&4&6\\ 2&1&7\\ { - 2}&5&3 \end{array}} \right).\)
A. 153.
B. 104
C. Các câu kia sai
D. 216
30/08/2021 0 Lượt xem
Câu 2: Cho \(z = \cos \left( {\frac{{2\pi }}{n}} \right) - i\sin \left( {\frac{{2\pi }}{n}} \right)\) là một nghiệm của \(\sqrt[n]{1}\) . Ma trận vuông \({A} = ({f_{k,j}})\) cấp n, với \({a_{k,j}} = {z^{(k - 1).(j - 1)}}\) được gọi là ma trận Fourier. Phép nhân Fn . X được gọi là phép biến đổi Fourier. Tìm biến đổi Fourier cấp 3.
A. \(A = \left( {\begin{array}{*{20}{c}} 1&1&1\\ 1&{ - 1}&{ - 1}\\ 1&1&z \end{array}} \right)\)
B. \(A = \left( {\begin{array}{*{20}{c}} 1&1&1\\ 1&{ - 1}&1\\ 1&{{z^2}}&z \end{array}} \right)\)
C. Ba câu kia đều sai
D. \(A = \left( {\begin{array}{*{20}{c}} 1&1&1\\ 1&z&{{z^2}}\\ 1&{{z^2}}&z \end{array}} \right)\)
30/08/2021 0 Lượt xem
Câu 3: \(\infty -\) chuẩn của ma trận là số lớn nhất trong tổng trị tuyệt đối của từng Hàng. Tìm \(\infty -\) chuẩn của ma trận \(A = \left( {\begin{array}{*{20}{c}} 5&{ - 1}&2\\ 3&7&1\\ 2&{ - 5}&7 \end{array}} \right).\)
A. 11.
B. 8
C. 14
D. Ba câu kia đều sai
30/08/2021 0 Lượt xem
Câu 4: Cho ma trận \(A = \left( {\begin{array}{*{20}{c}} { - 2}&1&1\\ { - 3}&1&2\\ { - 2}&1&1 \end{array}} \right)\) . Ma trận A gọi là ma trận lũy linh nếu Ak = 0. Số nguyên dương k nhỏ nhất thỏa Ak = 0 được gọi là chỉ số của ma trận lũy linh. Tìm chỉ số của ma trận A.
A. 3 câu kia đều sai
B. k = 2.
C. k = 3.
D. k = 4.
30/08/2021 0 Lượt xem
Câu 5: Cho ma trận \(A = \left[ {\begin{array}{*{20}{c}} { - 2}&1&1\\ { - 3}&1&2\\ { - 2}&1&1 \end{array}} \right]\) . Tìm số tự nhiên n nhỏ nhất sao cho \(r({A^n}) = 0\)
A. Các câu kia sai
B. n = 2
C. n = 4
D. n = 3
30/08/2021 0 Lượt xem
Câu 6: Cho \(A \in {M_{3 \times 4}}\left[ R \right]\) . Sử dụng phép hai phép biến đổi sơ cấp theo liên tiếp: cộng vào cột thứ 3, cột 2 đã được nhân với số 2 và đổi chỗ cột 1 cho cột 2. Phép biến đổi trên tương đương với nhân bên phải ma trận A cho ma trận nào sau đây.
A. \(\left[ {\begin{array}{*{20}{c}} 1&0&0\\ 2&1&0\\ 0&0&1 \end{array}} \right]\)
B. \(\left[ {\begin{array}{*{20}{c}} 1&0&0\\ 0&0&1\\ 0&1&2 \end{array}} \right]\)
C. \(\left[ {\begin{array}{*{20}{c}} 1&0&0\\ 0&2&1\\ 0&1&0 \end{array}} \right]\)
D. 3 câu kia đều sai
30/08/2021 0 Lượt xem

Câu hỏi trong đề: Bộ câu hỏi trắc nghiệm môn Đại số tuyến tính - Phần 6
- 3 Lượt thi
- 45 Phút
- 25 Câu hỏi
- Sinh viên
Cùng chủ đề Bộ câu hỏi trắc nghiệm môn Đại số tuyến tính có đáp án
- 990
- 66
- 25
-
68 người đang thi
- 523
- 18
- 25
-
72 người đang thi
- 436
- 15
- 25
-
33 người đang thi
- 368
- 10
- 25
-
24 người đang thi
Chia sẻ:
Đăng Nhập để viết bình luận