Câu hỏi: Tổng tất cả các phần tử trên đường chéo gọi là vết của ma trận. Vết của ma trận AT.A là chuẩn Frobenius của ma trận A. Tìm chuẩn Frobenius của ma trận \(A = \left( {\begin{array}{*{20}{c}} 3&4&6\\ 2&1&7\\ { - 2}&5&3 \end{array}} \right).\)

242 Lượt xem
30/08/2021
3.3 9 Đánh giá

A. 153.

B. 104

C. Các câu kia sai

D. 216

Đăng Nhập để xem đáp án
Câu hỏi khác cùng đề thi
Câu 1: Cho ma trận \(A = \left[ {\begin{array}{*{20}{c}} 2&6\\ 0&2 \end{array}} \right]\) . Tính A100.

A. \(\left[ {\begin{array}{*{20}{c}} {{2^{100}}}&{300}\\ 0&{{2^{100}}} \end{array}} \right]\)

B. Các câu kia sai

C. \({2^{100}}\left[ {\begin{array}{*{20}{c}} 1&{100}\\ 0&1 \end{array}} \right]\)

D. \({2^{100}}\left[ {\begin{array}{*{20}{c}} 1&{300}\\ 0&1 \end{array}} \right]\)

Xem đáp án

30/08/2021 0 Lượt xem

Câu 3: Tính hạng của ma trận:

A. r( A) = 4.

B. r( A) = 3.

C. r( A) = 5.

D. r( A) = 2.

Xem đáp án

30/08/2021 0 Lượt xem

Câu 4: Cho \(z = \cos \left( {\frac{{2\pi }}{n}} \right) - i\sin \left( {\frac{{2\pi }}{n}} \right)\) là một nghiệm của \(\sqrt[n]{1}\) . Ma trận vuông \({A} = ({f_{k,j}})\) cấp n, với \({a_{k,j}} = {z^{(k - 1).(j - 1)}}\) được gọi là ma trận Fourier. Phép nhân Fn . X được gọi là phép biến đổi Fourier. Tìm biến đổi Fourier cấp 3.

A. \(A = \left( {\begin{array}{*{20}{c}} 1&1&1\\ 1&{ - 1}&{ - 1}\\ 1&1&z \end{array}} \right)\)

B. \(A = \left( {\begin{array}{*{20}{c}} 1&1&1\\ 1&{ - 1}&1\\ 1&{{z^2}}&z \end{array}} \right)\)

C. Ba câu kia đều sai

D. \(A = \left( {\begin{array}{*{20}{c}} 1&1&1\\ 1&z&{{z^2}}\\ 1&{{z^2}}&z \end{array}} \right)\)

Xem đáp án

30/08/2021 0 Lượt xem

Chưa có bình luận

Đăng Nhập để viết bình luận

Bộ câu hỏi trắc nghiệm môn Đại số tuyến tính - Phần 6
Thông tin thêm
  • 3 Lượt thi
  • 45 Phút
  • 25 Câu hỏi
  • Sinh viên