Câu hỏi: Cho ma trận \(A = \left[ {\begin{array}{*{20}{c}} 2&6\\ 0&2 \end{array}} \right]\) . Tính A100.
A. \(\left[ {\begin{array}{*{20}{c}} {{2^{100}}}&{300}\\ 0&{{2^{100}}} \end{array}} \right]\)
B. Các câu kia sai
C. \({2^{100}}\left[ {\begin{array}{*{20}{c}} 1&{100}\\ 0&1 \end{array}} \right]\)
D. \({2^{100}}\left[ {\begin{array}{*{20}{c}} 1&{300}\\ 0&1 \end{array}} \right]\)
Câu 1: Cho \(A = \left[ {\begin{array}{*{20}{c}} 1&2&1\\ 2&5&2\\ 3&7&4 \end{array}} \right]\) và M là tập tất cả các phần tử của A-1. Khẳng định nào sau đây đúng?
A. \(\left\{ { - 1,0,2} \right\} \subset M\)
B. \(\left\{ {6,-2,2} \right\} \subset M\)
C. \(\left\{ { 6,-1,0} \right\} \subset M\)
D. \(\left\{ {6,1,3} \right\} \subset M\)
30/08/2021 0 Lượt xem
Câu 2: Cho \(A \in {M_{3 \times 4}}\left[ {{\rm{ }}R{\rm{ }}} \right]\) . Sử dụng phép biến đổi sơ cấp: Cộng vào hàng thứ 3, hàng 1 đã được nhân với số 2. Phép biến đổi trên tương đương với nhân bên trái ma trận A cho ma trận nào sau đây.
A. 3 câu kia đều sai
B. \(\left[ {\begin{array}{*{20}{c}} 1&0&0\\ 0&1&0\\ 2&0&1 \end{array}} \right]\)
C. \(\left[ {\begin{array}{*{20}{c}} 1&0&0\\ 2&0&1\\ 0&1&0 \end{array}} \right]\)
D. \(\left[ {\begin{array}{*{20}{c}} 1&0&0\\ 0&1&0\\ { - 2}&1&1 \end{array}} \right]\)
30/08/2021 0 Lượt xem
Câu 3: Cho vecto đơn vị. Đặt I - u. uT, vecto X = (1,-2,1)T. Tính (I - u. uT).X. Phép biến đổi (I - u. uT) là phép chiếu vecto X lên mặt phẳng P là mặt phẳng qua gốc O nhận u làm vecto pháp tuyến.
A. \(\left( \begin{array}{l} 7/3\\ - 4/3\\ 1/3 \end{array} \right)\)
B. \(\left( \begin{array}{l} 5/3\\ 2/3\\ - 1/3 \end{array} \right)\)
C. 3 câu kia đều sai
D. \(\left( \begin{array}{l} 4/3\\ 1/3\\ 2/3 \end{array} \right)\)
30/08/2021 0 Lượt xem
Câu 4: Cho \(A = \left[ {\begin{array}{*{20}{c}} {\cos \frac{\pi }{6}}&{ - \sin \frac{\pi }{6}}\\ {\sin \frac{\pi }{6}}&{\cos \frac{\pi }{6}} \end{array}} \right],X = \in {M_{2 \times 1}}\left[ R \right]\) . Thực hiện phép nhân AX, ta thấy: ![]()
A. Vecto X quay ngược chiều kim đồng hồ một góc bằng \({\frac{\pi }{6}}\)
B. Vecto X quay cùng chiều kim đồng hồ một góc bằng \({\frac{\pi }{3}}\)
C. Vecto X quay cùng chiều kim đồng hồ một góc bằng \({\frac{\pi }{6}}\)
D. Ba câu kia đều sai
30/08/2021 0 Lượt xem
Câu 5: \(\infty -\) chuẩn của ma trận là số lớn nhất trong tổng trị tuyệt đối của từng Hàng. Tìm \(\infty -\) chuẩn của ma trận \(A = \left( {\begin{array}{*{20}{c}} 5&{ - 1}&2\\ 3&7&1\\ 2&{ - 5}&7 \end{array}} \right).\)
A. 11.
B. 8
C. 14
D. Ba câu kia đều sai
30/08/2021 0 Lượt xem
Câu 6: Cho \(z = \cos \left( {\frac{{2\pi }}{n}} \right) - i\sin \left( {\frac{{2\pi }}{n}} \right)\) là một nghiệm của \(\sqrt[n]{1}\) . Ma trận vuông \({F_n} = ({f_{k,j}})\) cấp n, với \({f_{k,j}} = {z^{(k - 1).(j - 1)}}\) được gọi là ma trận Fourier. Phép nhân Fn . X được gọi là phép biến đổi Fourier. Tìm biến đổi Fourier của vecto X = (1,0,1,1)T.
A. Ba câu kia đều sai
B. X = ( 4, −i, 1, i)T
C. X = ( 3, i, 1, −i)T
D. X = ( 3, −i, 1, i)T
30/08/2021 0 Lượt xem

Câu hỏi trong đề: Bộ câu hỏi trắc nghiệm môn Đại số tuyến tính - Phần 6
- 3 Lượt thi
- 45 Phút
- 25 Câu hỏi
- Sinh viên
Cùng chủ đề Bộ câu hỏi trắc nghiệm môn Đại số tuyến tính có đáp án
- 1.1K
- 66
- 25
-
40 người đang thi
- 570
- 18
- 25
-
36 người đang thi
- 479
- 15
- 25
-
91 người đang thi
- 408
- 10
- 25
-
77 người đang thi
Chia sẻ:
Đăng Nhập để viết bình luận