Câu hỏi: Cho ma trận \(A = \left[ {\begin{array}{*{20}{c}} { - 2}&1&1\\ { - 3}&1&2\\ { - 2}&1&1 \end{array}} \right]\) . Tìm số tự nhiên n nhỏ nhất sao cho \(r({A^n}) = 0\)

206 Lượt xem
30/08/2021
3.6 9 Đánh giá

A. Các câu kia sai

B. n = 2

C. n = 4

D. n = 3

Đăng Nhập để xem đáp án
Câu hỏi khác cùng đề thi
Câu 1: Cho ma trận \(A = \left[ {\begin{array}{*{20}{c}} 2&6\\ 0&2 \end{array}} \right]\) . Tính A100.

A. \(\left[ {\begin{array}{*{20}{c}} {{2^{100}}}&{300}\\ 0&{{2^{100}}} \end{array}} \right]\)

B. Các câu kia sai

C. \({2^{100}}\left[ {\begin{array}{*{20}{c}} 1&{100}\\ 0&1 \end{array}} \right]\)

D. \({2^{100}}\left[ {\begin{array}{*{20}{c}} 1&{300}\\ 0&1 \end{array}} \right]\)

Xem đáp án

30/08/2021 0 Lượt xem

Câu 3: Cho \(A \in {M_{3 \times 4}}\left[ R \right]\) . Sử dụng phép hai phép biến đổi sơ cấp theo liên tiếp: cộng vào cột thứ 3, cột 2 đã được nhân với số 2 và đổi chỗ cột 1 cho cột 2. Phép biến đổi trên tương đương với nhân bên phải ma trận A cho ma trận nào sau đây.

A. \(\left[ {\begin{array}{*{20}{c}} 1&0&0\\ 2&1&0\\ 0&0&1 \end{array}} \right]\)

B. \(\left[ {\begin{array}{*{20}{c}} 1&0&0\\ 0&0&1\\ 0&1&2 \end{array}} \right]\)

C. \(\left[ {\begin{array}{*{20}{c}} 1&0&0\\ 0&2&1\\ 0&1&0 \end{array}} \right]\)

D. 3 câu kia đều sai

Xem đáp án

30/08/2021 0 Lượt xem

Câu 4: Cho vecto đơn vị. Đặt I - u. uT, vecto X = (1,-2,1)T. Tính (I - u. uT).X. Phép biến đổi (I - u. uT) là phép chiếu vecto X lên mặt phẳng P là mặt phẳng qua gốc O nhận u làm vecto pháp tuyến.

A. \(\left( \begin{array}{l} 7/3\\ - 4/3\\ 1/3 \end{array} \right)\)

B. \(\left( \begin{array}{l} 5/3\\ 2/3\\ - 1/3 \end{array} \right)\)

C. 3 câu kia đều sai

D. \(\left( \begin{array}{l} 4/3\\ 1/3\\ 2/3 \end{array} \right)\)

Xem đáp án

30/08/2021 0 Lượt xem

Chưa có bình luận

Đăng Nhập để viết bình luận

Bộ câu hỏi trắc nghiệm môn Đại số tuyến tính - Phần 6
Thông tin thêm
  • 3 Lượt thi
  • 45 Phút
  • 25 Câu hỏi
  • Sinh viên