Câu hỏi:

Xét \(\int\limits_0^2 {\frac{x}{{\left( {{x^2} + 1} \right)\ln 2}}{e^{{{\log }_2}\left( {{x^2} + 1} \right)}}dx} \), nếu \(u = {\log _2}\left( {{x^2} + 1} \right)\) đặt thì \(\int\limits_0^2 {\frac{x}{{\left( {{x^2} + 1} \right)\ln 2}}{e^{{{\log }_2}\left( {{x^2} + 1} \right)}}dx} \) bằng?

81 Lượt xem
05/11/2021
3.4 5 Đánh giá

A. \(\int\limits_0^2 {\frac{x}{{\left( {{x^2} + 1} \right)\ln 2}}{e^{{{\log }_2}\left( {{x^2} + 1} \right)}}dx} = \int\limits_0^{{{\log }_2}5} {\frac{1}{2}{e^u}du} \)

B. \(\int\limits_0^2 {\frac{x}{{\left( {{x^2} + 1} \right)\ln 2}}{e^{{{\log }_2}\left( {{x^2} + 1} \right)}}dx} = - \int\limits_0^{{{\log }_2}5} {\frac{1}{2}{e^u}du} \)

C. \(\int\limits_0^2 {\frac{x}{{\left( {{x^2} + 1} \right)\ln 2}}{e^{{{\log }_2}\left( {{x^2} + 1} \right)}}dx} = \int\limits_0^{{{\log }_2}4} {2{e^u}du} \)

D. \(\int\limits_0^2 {\frac{x}{{\left( {{x^2} + 1} \right)\ln 2}}{e^{{{\log }_2}\left( {{x^2} + 1} \right)}}dx} = \int\limits_0^{{{\log }_2}5} {{e^u}du} \)

Đăng Nhập để xem đáp án
Câu hỏi khác cùng đề thi
Câu 2:

Trong không gian Oxyz, cho điểm B(-1;0;8) và điểm A(4;3;5). Mặt phẳng trung trực của đoạn thẳng AB có phương trình là

A. - 5x - 3y + 3z - 14 = 0

B. - 10x - 6y + 6z + 15 = 0

C. - 10x - 6y + 6z - 15 = 0

D. \( - 5x - 3y + 3z + \frac{{15}}{2} = 0\)

Xem đáp án

05/11/2021 0 Lượt xem

Câu 3:

Cho \(I = \int {\frac{{{{\ln }^5}x}}{{2x}}dx} \). Giả sử đặt t = ln x. Khi đó ta có:

A. \(I = 2\int {{t^6}dt} \)

B. \(I = 2\int {{t^5}dt} \)

C. \(I = \frac{1}{2}\int {{t^6}dt} \)

D. \(I = \frac{1}{2}\int {{t^5}dt} \)

Xem đáp án

05/11/2021 0 Lượt xem

Chưa có bình luận

Đăng Nhập để viết bình luận

Đề thi thử THPT QG năm 2021 môn Toán của Trường THPT Thủ Khoa Huân
Thông tin thêm
  • 0 Lượt thi
  • 90 Phút
  • 50 Câu hỏi
  • Học sinh