Câu hỏi:
Xét \(\int\limits_0^2 {\frac{x}{{\left( {{x^2} + 1} \right)\ln 2}}{e^{{{\log }_2}\left( {{x^2} + 1} \right)}}dx} \), nếu \(u = {\log _2}\left( {{x^2} + 1} \right)\) đặt thì \(\int\limits_0^2 {\frac{x}{{\left( {{x^2} + 1} \right)\ln 2}}{e^{{{\log }_2}\left( {{x^2} + 1} \right)}}dx} \) bằng?
A. \(\int\limits_0^2 {\frac{x}{{\left( {{x^2} + 1} \right)\ln 2}}{e^{{{\log }_2}\left( {{x^2} + 1} \right)}}dx} = \int\limits_0^{{{\log }_2}5} {\frac{1}{2}{e^u}du} \)
B. \(\int\limits_0^2 {\frac{x}{{\left( {{x^2} + 1} \right)\ln 2}}{e^{{{\log }_2}\left( {{x^2} + 1} \right)}}dx} = - \int\limits_0^{{{\log }_2}5} {\frac{1}{2}{e^u}du} \)
C. \(\int\limits_0^2 {\frac{x}{{\left( {{x^2} + 1} \right)\ln 2}}{e^{{{\log }_2}\left( {{x^2} + 1} \right)}}dx} = \int\limits_0^{{{\log }_2}4} {2{e^u}du} \)
D. \(\int\limits_0^2 {\frac{x}{{\left( {{x^2} + 1} \right)\ln 2}}{e^{{{\log }_2}\left( {{x^2} + 1} \right)}}dx} = \int\limits_0^{{{\log }_2}5} {{e^u}du} \)
Câu 1: Thể tích hình hộp chữ nhật có độ dài ba kích thước lần lượt là 2,3,5 bằng
A. 30
B. 10
C. 15
D. 20
05/11/2021 0 Lượt xem
Câu 2: Trong không gian Oxyz, cho điểm B(-1;0;8) và điểm A(4;3;5). Mặt phẳng trung trực của đoạn thẳng AB có phương trình là
A. - 5x - 3y + 3z - 14 = 0
B. - 10x - 6y + 6z + 15 = 0
C. - 10x - 6y + 6z - 15 = 0
D. \( - 5x - 3y + 3z + \frac{{15}}{2} = 0\)
05/11/2021 0 Lượt xem
Câu 3: Cho \(I = \int {\frac{{{{\ln }^5}x}}{{2x}}dx} \). Giả sử đặt t = ln x. Khi đó ta có:
A. \(I = 2\int {{t^6}dt} \)
B. \(I = 2\int {{t^5}dt} \)
C. \(I = \frac{1}{2}\int {{t^6}dt} \)
D. \(I = \frac{1}{2}\int {{t^5}dt} \)
05/11/2021 0 Lượt xem
Câu 4: Đường cong hình bên dưới là đồ thị hàm số \(y = a{x^3} + b{x^2} + cx + d\).
6184b9969e6a5.png)
Xét các mệnh đề sau:
(I) a = -1
(II) ad > 0
(III) d = -1
(IV) a + c = b + 1
Tìm số mệnh đề sai.
6184b9969e6a5.png)
A. 3
B. 1
C. 4
D. 2
05/11/2021 0 Lượt xem
Câu 5: Giá trị nhỏ nhất của hàm số \(y = \frac{{2x + 1}}{{1 - x}}\) trên đoạn [2;3] bằng
A. -3
B. \(\frac{3}{4}\)
C. \( - \frac{7}{2}\)
D. -5
05/11/2021 0 Lượt xem
Câu 6: Đánh số thứ tự cho 20 bạn học sinh lần lượt từ số thứ tự 1 đến số thứ tự 20. Chọn ngẫu nhiên ba bạn học sinh từ 20 bạn học sính đó. Tính xác suất để ba bạn được chọn không có hai bạn nào được đánh số thứ tự liên tiếp.
A. \(\frac{{799}}{{1140}}\)
B. \(\frac{{139}}{{190}}\)
C. \(\frac{{68}}{{95}}\)
D. \(\frac{{27}}{{95}}\)
05/11/2021 0 Lượt xem

Câu hỏi trong đề: Đề thi thử THPT QG năm 2021 môn Toán của Trường THPT Thủ Khoa Huân
- 0 Lượt thi
- 90 Phút
- 50 Câu hỏi
- Học sinh
Cùng danh mục Thi THPT QG Môn Toán
- 2.1K
- 285
- 50
-
21 người đang thi
- 1.3K
- 122
- 50
-
12 người đang thi
- 1.1K
- 75
- 50
-
78 người đang thi
- 901
- 35
- 50
-
67 người đang thi
Chia sẻ:
Đăng Nhập để viết bình luận