Câu hỏi:
Xét \(\int\limits_0^2 {\frac{x}{{\left( {{x^2} + 1} \right)\ln 2}}{e^{{{\log }_2}\left( {{x^2} + 1} \right)}}dx} \), nếu \(u = {\log _2}\left( {{x^2} + 1} \right)\) đặt thì \(\int\limits_0^2 {\frac{x}{{\left( {{x^2} + 1} \right)\ln 2}}{e^{{{\log }_2}\left( {{x^2} + 1} \right)}}dx} \) bằng?
A. \(\int\limits_0^2 {\frac{x}{{\left( {{x^2} + 1} \right)\ln 2}}{e^{{{\log }_2}\left( {{x^2} + 1} \right)}}dx} = \int\limits_0^{{{\log }_2}5} {\frac{1}{2}{e^u}du} \)
B. \(\int\limits_0^2 {\frac{x}{{\left( {{x^2} + 1} \right)\ln 2}}{e^{{{\log }_2}\left( {{x^2} + 1} \right)}}dx} = - \int\limits_0^{{{\log }_2}5} {\frac{1}{2}{e^u}du} \)
C. \(\int\limits_0^2 {\frac{x}{{\left( {{x^2} + 1} \right)\ln 2}}{e^{{{\log }_2}\left( {{x^2} + 1} \right)}}dx} = \int\limits_0^{{{\log }_2}4} {2{e^u}du} \)
D. \(\int\limits_0^2 {\frac{x}{{\left( {{x^2} + 1} \right)\ln 2}}{e^{{{\log }_2}\left( {{x^2} + 1} \right)}}dx} = \int\limits_0^{{{\log }_2}5} {{e^u}du} \)
Câu 1: Cho hình chóp S.ABCD có đáy ABCD là hình chữ nhật, AB = a,AD = 2a, SA vuông góc với mặt phẳng đáy và SA = a (tham khảo hình vẽ). Gọi M là trung điểm của CD. Khoảng cách giữa hai đường thẳng SD, BM bằng
6184b99666ff7.png)
6184b99666ff7.png)
A. \(\frac{{a\sqrt {21} }}{{21}}\)
B. \(\frac{{2a\sqrt {21} }}{{21}}\)
C. \(\frac{{2a\sqrt 7 }}{7}\)
D. \(\frac{{a\sqrt 7 }}{7}\)
05/11/2021 0 Lượt xem
Câu 2: Trong không gian Oxyz, cho ba điểm \(A\left( {3; - 1;0} \right);B\left( { - 2;5;1} \right);C\left( { - 1; - 1;4} \right).\) Đường thẳng d đi qua đi qua A và song song với BC có phương trình tham số là
A. \(d:\left\{ \begin{array}{l} x = 3 - 2t\\ y = - 1 + 5t\\ z = t \end{array} \right.\)
B. \(d:\left\{ \begin{array}{l} x = 3 - t\\ y = - 1 - t\\ z = 4t \end{array} \right.\)
C. \(d:\left\{ \begin{array}{l} x = 3 + t\\ y = - 1 - 6t\\ z = 3t \end{array} \right.\)
D. \(d:\left\{ \begin{array}{l} x = 3 - 3t\\ y = - 1 + 4t\\ z = 5t \end{array} \right.\)
05/11/2021 0 Lượt xem
Câu 3: Diện tích hình phẳng giới hạn bởi các đường y = \(3{x^2} - 2{x^3}\); y = 0; x = 0; x = \(\frac{3}{2}\) được tính bởi công thức nào dưới đây
A. \(S=\int\limits_0^{\frac{3}{2}} {\left( {3{x^2} - 2{x^3}} \right)} dx\)
B. \(S= \pi \int\limits_0^{\frac{3}{2}} {\left( {3{x^2} - 2{x^3}} \right)} dx\)
C. \(S=\int\limits_0^{\frac{3}{2}} {\left( {2{x^3} - 3{x^2}} \right)} dx\)
D. \(S=\pi \int\limits_0^{\frac{3}{2}} {\left( {2{x^3} - 3{x^2}} \right)} dx\)
05/11/2021 0 Lượt xem
Câu 4: Cho hình phẳng (H) giới hạn bởi đồ thị hàm số \(y = - {x^2} + 3x - 2\), trục hoành và hai đường thẳng x = 1, x = 2. Quay (H) xung quanh trục hoành được khối tròn xoay có thể tích là
A. \(V = \int\limits_1^2 {\left| {{x^2} - 3x + 2} \right|} \,{\rm{d}}x\)
B. \(V = \int\limits_1^2 {{{\left| {{x^2} - 3x + 2} \right|}^2}} \,{\rm{d}}x\)
C. \(V = \pi \int\limits_1^2 {{{\left( {{x^2} - 3x + 2} \right)}^2}} \,{\rm{d}}x\)
D. \(V = \pi \int\limits_1^2 {\left| {{x^2} - 3x + 2} \right|} \,{\rm{d}}x\)
05/11/2021 0 Lượt xem
Câu 5: Cho khối chóp có diện tích đáy B=5và chiều cao h=6.Thể tích của khối chóp đã cho bằng
A. 10
B. 15
C. 20
D. 30
05/11/2021 0 Lượt xem
Câu 6: Tích phân \(I = \int\limits_0^{\frac{\pi }{2}} {\left( {c{\rm{osx}} + 1} \right)\sin xdx} \) có kết quả là:
A. -1,5
B. 0,5
C. 1,5
D. -0,5
05/11/2021 0 Lượt xem

Câu hỏi trong đề: Đề thi thử THPT QG năm 2021 môn Toán của Trường THPT Thủ Khoa Huân
- 0 Lượt thi
- 90 Phút
- 50 Câu hỏi
- Học sinh
Cùng danh mục Thi THPT QG Môn Toán
- 1.9K
- 283
- 50
-
59 người đang thi
- 1.1K
- 122
- 50
-
52 người đang thi
- 914
- 75
- 50
-
32 người đang thi
- 727
- 35
- 50
-
55 người đang thi
Chia sẻ:
Đăng Nhập để viết bình luận