Câu hỏi:

Cho a là số thực dương a, b, c khác 1 thỏa mãn \({\log _a}c + {\log _b}c = {\log _a}2020.{\log _b}c\). Mệnh đề nào dưới đây đúng?

134 Lượt xem
05/11/2021
3.6 10 Đánh giá

A. abc = 2020

B. ac = 2020

C. bc = 2020

D. ab = 2020

Đăng Nhập để xem đáp án
Câu hỏi khác cùng đề thi
Câu 2:

Tính đạo hàm của hàm số \(y = x{e^{2{\rm{x}} + 1}}\)

A. \(y' = e\left( {2{\rm{x}} + 1} \right){e^{2{\rm{x}} + 1}}\)

B. \(y' = e\left( {2{\rm{x}} + 1} \right){e^{2{\rm{x}}}}\)

C. \(y' = 2{e^{2x + 1}}\)

D. \(y' = {e^{2x + 1}}\)

Xem đáp án

05/11/2021 0 Lượt xem

Câu 3:

Cho hàm số \(f\left( x \right) = \sqrt {{{\log }_2}\left( {3x + 4} \right)} \). Tập hợp nào sau đây là tập xác định của f(x) là

A. \(D = \left( { - 1; + \infty } \right)\)

B. \(D = \left( { - \frac{4}{3}; + \infty } \right)\)

C. \(D = \left[ { - 1; + \infty } \right)\)

D. \(D = \left[ {1; + \infty } \right)\)

Xem đáp án

05/11/2021 0 Lượt xem

Câu 5:

Xét \(\int\limits_0^2 {\frac{x}{{\left( {{x^2} + 1} \right)\ln 2}}{e^{{{\log }_2}\left( {{x^2} + 1} \right)}}dx} \), nếu \(u = {\log _2}\left( {{x^2} + 1} \right)\) đặt thì \(\int\limits_0^2 {\frac{x}{{\left( {{x^2} + 1} \right)\ln 2}}{e^{{{\log }_2}\left( {{x^2} + 1} \right)}}dx} \) bằng?

A. \(\int\limits_0^2 {\frac{x}{{\left( {{x^2} + 1} \right)\ln 2}}{e^{{{\log }_2}\left( {{x^2} + 1} \right)}}dx} = \int\limits_0^{{{\log }_2}5} {\frac{1}{2}{e^u}du} \)

B. \(\int\limits_0^2 {\frac{x}{{\left( {{x^2} + 1} \right)\ln 2}}{e^{{{\log }_2}\left( {{x^2} + 1} \right)}}dx} = - \int\limits_0^{{{\log }_2}5} {\frac{1}{2}{e^u}du} \)

C. \(\int\limits_0^2 {\frac{x}{{\left( {{x^2} + 1} \right)\ln 2}}{e^{{{\log }_2}\left( {{x^2} + 1} \right)}}dx} = \int\limits_0^{{{\log }_2}4} {2{e^u}du} \)

D. \(\int\limits_0^2 {\frac{x}{{\left( {{x^2} + 1} \right)\ln 2}}{e^{{{\log }_2}\left( {{x^2} + 1} \right)}}dx} = \int\limits_0^{{{\log }_2}5} {{e^u}du} \)

Xem đáp án

05/11/2021 0 Lượt xem

Câu 6:

Tập xác định của hàm số sau \(f\left( x \right) = \sqrt {{{\log }_2}\frac{{3 - 2x - {x^2}}}{{x + 1}}} \) là

A. \(D = \left[ {\frac{{ - 3 - \sqrt {17} }}{2}; - 1} \right) \cup \left[ {\frac{{ - 3 + \sqrt {17} }}{2};1} \right)\)

B. \(D = \left( { - \infty ; - 3} \right) \cup \left( { - 1;1} \right)\)

C. \(D = \left( { - \infty ;\frac{{ - 3 - \sqrt {17} }}{2}} \right] \cup \left( { - 1;\frac{{ - 3 + \sqrt {17} }}{2}} \right]\)

D. \(D = \left( { - \infty ; - 3} \right] \cup \left[ {1; + \infty } \right)\)

Xem đáp án

05/11/2021 0 Lượt xem

Chưa có bình luận

Đăng Nhập để viết bình luận

Đề thi thử THPT QG năm 2021 môn Toán của Trường THPT Thủ Khoa Huân
Thông tin thêm
  • 0 Lượt thi
  • 90 Phút
  • 50 Câu hỏi
  • Học sinh