Câu hỏi:
Trong mặt phẳng tọa độ \(Oxy\) cho hai điểm \(M\left( { - 10;1} \right)\) và \(M'\left( {3;8} \right)\). Phép tịnh tiến theo vectơ \(\overrightarrow v \) biến điểm \(M\) thành điểm \(M'\). Khi đó vectơ \(\overrightarrow v \) có tọa độ là
A. \(\overrightarrow v = \left( {13; - 7} \right)\)
B. \(\overrightarrow v = \left( { - 13; - 7} \right)\)
C. \(\overrightarrow v = \left( { - 13;7} \right)\)
D. \(\overrightarrow v = \left( {13;7} \right)\)
									
										Câu 1: Biết rằng \(z = {m^2} - 3m + 3 + \left( {m - 2} \right)i\)  \(\left( {m \in \mathbb{R}} \right)\) là một số thực. Giá trị của biểu thức  \(1 + z + {z^2} + {z^3} + ... + {z^{2019}}\) bằng
									
		                        		                            									A. 2019
B. 0
C. 1
D. 2020
05/11/2021 6 Lượt xem
									
										Câu 2: Tìm tọa độ giao điểm I của đồ thị hàm số \(y =  - 4{x^3} + 3x\) với đường thẳng \(y = x - 2\)
									
		                        		                            									A. \(I\left( {2;2} \right)\)
B. \(I\left( {1;1} \right)\)
C. \(I\left( {2;1} \right)\)
D. \(I\left( {1; - 1} \right)\)
05/11/2021 7 Lượt xem
									
										Câu 3: Trong không gian Oxyz, cho đường thẳng \(d:\frac{x}{2} = \frac{{y - 3}}{1} = \frac{{z - 2}}{{ - 3}}\) và mặt phẳng \(\left( P \right):x - y + 2z - 6 = 0\). Đường thẳng nằm trong mặt phẳng \(\left( P \right)\), cắt và vuông góc với đường thẳng d có phương trình là
									
		                        		                            									A. \(\frac{{x + 2}}{1} = \frac{{y - 2}}{7} = \frac{{z - 5}}{3}.\)
B. \(\frac{{x - 2}}{1} = \frac{{y - 4}}{7} = \frac{{z + 1}}{3}.\)
C. \(\frac{{x + 2}}{1} = \frac{{y + 4}}{7} = \frac{{z - 1}}{3}.\)
D. \(\frac{{x - 2}}{1} = \frac{{y + 2}}{7} = \frac{{z + 5}}{3}.\)
05/11/2021 6 Lượt xem
									
										Câu 4: Trong mặt phẳng tọa độ \(Oxy\),  cho điểm \(A\left( {2;5} \right)\). Phép tịnh tiến theo vectơ \(\overrightarrow v  = \left( {1;2} \right)\) biến điểm \(A\) thành điểm \(A'\) có tọa độ là.
									
		                        		                            									A. \(A'\left( {3;7} \right)\)
B. \(A'\left( {3;1} \right)\)
C. \(A'\left( {4;7} \right)\)
D. \(A'\left( {1;6} \right)\)
05/11/2021 7 Lượt xem
									
										Câu 5: Trong không gian Oxyz, cho điểm \(I\left( {1;2;0} \right)\) và mặt phẳng \(\left( P \right):2x - 2y + z - 7 = 0\). Gọi \(\left( S \right)\) là mặt cầu có tâm I và cắt mặt phẳng \(\left( P \right)\) theo giao tuyến là một đường tròn \(\left( C \right)\). Biết rằng hình tròn \(\left( C \right)\) có diện tích bằng \(16\pi \). Mặt cầu \(\left( S \right)\) có phương trình là
									
		                        		                            									A. \({\left( {x - 1} \right)^2} + {\left( {y - 2} \right)^2} + {z^2} = 16.\)
B. \({\left( {x - 1} \right)^2} + {\left( {y - 2} \right)^2} + {z^2} = 7.\)
C. \({\left( {x - 1} \right)^2} + {\left( {y - 2} \right)^2} + {z^2} = 25.\)
D. \({\left( {x - 1} \right)^2} + {\left( {y - 2} \right)^2} + {z^2} = 9.\)
05/11/2021 6 Lượt xem
									
										Câu 6: Hàm số nào sau đây luôn đồng biến trên từng khoảng xác định của nó?
									
		                        		                            									A. \(y = \dfrac{{3x + 10}}{{5x + 7}}\)
B. \(y = \dfrac{{ - x + 1}}{{5x - 3}}\)
C. \(y = \dfrac{{ - x - 8}}{{x + 3}}\)
D. \(y = \dfrac{{3x + 5}}{{x + 1}}\)
05/11/2021 7 Lượt xem
							
						Câu hỏi trong đề: Đề thi thử THPT QG năm 2021 môn Toán của Trường THPT Lý Thường Kiệt
- 14 Lượt thi
 - 90 Phút
 - 50 Câu hỏi
 - Học sinh
 
Cùng danh mục Thi THPT QG Môn Toán
- 2.1K
 - 286
 - 50
 
- 
													
														
50 người đang thi
 
- 1.3K
 - 122
 - 50
 
- 
													
														
60 người đang thi
 
- 1.1K
 - 75
 - 50
 
- 
													
														
54 người đang thi
 
- 951
 - 35
 - 50
 
- 
													
														
13 người đang thi
 
								
								
								
								
Chia sẻ:
Đăng Nhập để viết bình luận