Câu hỏi:

Trong mặt phẳng tọa độ \(Oxy\), phép vị tự tâm O tỉ số \( - 2\) biến điểm \(A\left( {1; - 3} \right)\) thành điểm \(A'\) có tọa độ là

424 Lượt xem
05/11/2021
3.5 8 Đánh giá

A. \(A'\left( { - 2; - 6} \right)\)

B. \(A'\left( { - 2;6} \right)\)

C. \(A'\left( {2;6} \right)\)

D. \(A'\left( {1;3} \right)\)

Đăng Nhập để xem đáp án
Câu hỏi khác cùng đề thi
Câu 1:

Phương trình \(\sin \left( {2x - \dfrac{\pi }{3}} \right) = 0\) có nghiệm là

A. \(x = k\pi ,k \in \mathbb{Z}\)

B. \(x = \dfrac{\pi }{6} + \dfrac{{k\pi }}{2},k \in \mathbb{Z}\)

C. \(x = \dfrac{\pi }{2} + k\pi ,k \in \mathbb{Z}\)

D. \(x = \dfrac{\pi }{3} + k\pi ,k \in \mathbb{Z}\)

Xem đáp án

05/11/2021 6 Lượt xem

Câu 3:

Trong không gian Oxyz, cho điểm \(I\left( {1;2;0} \right)\) và mặt phẳng \(\left( P \right):2x - 2y + z - 7 = 0\). Gọi \(\left( S \right)\) là mặt cầu có tâm I và cắt mặt phẳng \(\left( P \right)\) theo giao tuyến là một đường tròn \(\left( C \right)\). Biết rằng hình tròn \(\left( C \right)\) có diện tích bằng \(16\pi \). Mặt cầu \(\left( S \right)\) có phương trình là

A. \({\left( {x - 1} \right)^2} + {\left( {y - 2} \right)^2} + {z^2} = 16.\)

B. \({\left( {x - 1} \right)^2} + {\left( {y - 2} \right)^2} + {z^2} = 7.\)

C. \({\left( {x - 1} \right)^2} + {\left( {y - 2} \right)^2} + {z^2} = 25.\)

D. \({\left( {x - 1} \right)^2} + {\left( {y - 2} \right)^2} + {z^2} = 9.\)

Xem đáp án

05/11/2021 6 Lượt xem

Câu 5:

Giải phương trình \({4^{x - 1}} = {32^{3 - 2x}}\)

A. \(\dfrac{{17}}{{12}}\)

B. \(\dfrac{1}{8}\)

C. \(\dfrac{4}{3}\)

D. \(\dfrac{3}{4}\)

Xem đáp án

05/11/2021 6 Lượt xem

Câu 6:

Thể tích V của khối nón có bán kính đáy R và độ dài đường cao h được tính theo công thức nào dưới đây?

A. \(\dfrac{1}{3}{R^2}h\)

B. \(\dfrac{\pi }{3}{R^2}h\)

C. \(\dfrac{4}{3}\pi {R^3}h\)

D. \(\dfrac{4}{3}\pi {R^2}h\)

Xem đáp án

05/11/2021 6 Lượt xem

Chưa có bình luận

Đăng Nhập để viết bình luận

Đề thi thử THPT QG năm 2021 môn Toán của Trường THPT Lý Thường Kiệt
Thông tin thêm
  • 14 Lượt thi
  • 90 Phút
  • 50 Câu hỏi
  • Học sinh