Câu hỏi:

Cho khối chóp S.ABC có đáy ABC là tam giác đều cạnh a, SA vuông góc với mặt phẳng đáy và SA=a. Tính thể tích khối chóp S.ABC

291 Lượt xem
05/11/2021
3.2 5 Đánh giá

A. \(\dfrac{{{a^3}\sqrt 3 }}{{24}}\)

B. \(\dfrac{{{a^3}\sqrt 3 }}{4}\)

C. \(\dfrac{{{a^3}\sqrt 3 }}{{12}}\)

D. \(\dfrac{{{a^3}\sqrt 3 }}{6}\)

Đăng Nhập để xem đáp án
Câu hỏi khác cùng đề thi
Câu 2:

Thể tích V của khối nón có bán kính đáy R và độ dài đường cao h được tính theo công thức nào dưới đây?

A. \(\dfrac{1}{3}{R^2}h\)

B. \(\dfrac{\pi }{3}{R^2}h\)

C. \(\dfrac{4}{3}\pi {R^3}h\)

D. \(\dfrac{4}{3}\pi {R^2}h\)

Xem đáp án

05/11/2021 6 Lượt xem

Câu 4:

Trong không gian Oxyz, cho điểm \(I\left( {1;2;0} \right)\) và mặt phẳng \(\left( P \right):2x - 2y + z - 7 = 0\). Gọi \(\left( S \right)\) là mặt cầu có tâm I và cắt mặt phẳng \(\left( P \right)\) theo giao tuyến là một đường tròn \(\left( C \right)\). Biết rằng hình tròn \(\left( C \right)\) có diện tích bằng \(16\pi \). Mặt cầu \(\left( S \right)\) có phương trình là

A. \({\left( {x - 1} \right)^2} + {\left( {y - 2} \right)^2} + {z^2} = 16.\)

B. \({\left( {x - 1} \right)^2} + {\left( {y - 2} \right)^2} + {z^2} = 7.\)

C. \({\left( {x - 1} \right)^2} + {\left( {y - 2} \right)^2} + {z^2} = 25.\)

D. \({\left( {x - 1} \right)^2} + {\left( {y - 2} \right)^2} + {z^2} = 9.\)

Xem đáp án

05/11/2021 6 Lượt xem

Chưa có bình luận

Đăng Nhập để viết bình luận

Đề thi thử THPT QG năm 2021 môn Toán của Trường THPT Lý Thường Kiệt
Thông tin thêm
  • 14 Lượt thi
  • 90 Phút
  • 50 Câu hỏi
  • Học sinh