Câu hỏi: Trong không gian với hệ tọa độ Oxy, mặt phẳng \((P):x - y + 3z - 4 = 0\) có một vectơ pháp tuyến là:
A. \(\overrightarrow n = (1;1;3)\)
B. \(\overrightarrow n = ( - 1;3; - 4)\)
C. \(\overrightarrow n = (1; - 1;3)\)
D. \(\overrightarrow n = ( - 1; - 1;3)\)
Câu 1: Diện tích hình phẳng giới hạn bởi đồ thị (P) của hàm số \(y = {x^2} - 2x + 3\) và hai tiếp tuyến của (P) tại A(0;3), B(3;6) bằng
A. \(\frac{7}{2}\)
B. \(\frac{9}{2}\)
C. \(\frac{17}{4}\)
D. \(\frac{9}{4}\)
18/11/2021 2 Lượt xem
Câu 2: Trong không gian với hệ tọa độ Oxyz, tọa độ tâm I và bán kính R của mặt cầu có phương trình: \({\left( {x + 2} \right)^2} + {\left( {y - 3} \right)^2} + {z^2} = 5\) là:
A. \(I\left( {2; - 2;0} \right),R = 5\)
B. \(I\left( { - 2;3;0} \right),R = \sqrt 5 \)
C. \(I\left( {2;3;1} \right),R = 5\)
D. \(I\left( {2;3;0} \right),R = \sqrt 5 \)
18/11/2021 1 Lượt xem
Câu 3: Trong không gian với hệ tọa độ Oxyz, cho điểm A( - 2;0; - 2), B(0;3; - 3). Gọi (P) là mặt phẳng đi qua A sao cho khoảng cách từ điểm B đến mặt phẳng (P) là lớn nhất. Khoảng cách từ gốc tọa độ đến mặt phẳng (P) bằng:
A. \(\frac{2}{{\sqrt {14} }}\)
B. \(\frac{3}{{\sqrt {14} }}\)
C. \(\frac{4}{{\sqrt {14} }}\)
D. \(\frac{5}{{\sqrt {14} }}\)
18/11/2021 1 Lượt xem
Câu 4: Cho hai số phức \({z_1} = - 2 + 5i\) và \({z_2} = 1 - i\), số phức \({z_1}-{z_2}\) là:
A. -3+6i
B. -1+4i
C. -1+6i
D. -3+4i
18/11/2021 1 Lượt xem
Câu 5: Trong không gian với hệ tọa độ Oxyz, cho hai điểm \(A\left( {3; - 1;1} \right),B\left( {1;2; - 1} \right)\). Mặt cầu có tâm A và đi qua điểm B có phương trình là:
A. \({\left( {x + 3} \right)^2} + {\left( {y - 1} \right)^2} + {\left( {z + 1} \right)^2} = 15\)
B. \({\left( {x + 3} \right)^2} + {\left( {y - 1} \right)^2} + {\left( {z + 1} \right)^2} = 17\)
C. \({\left( {x - 3} \right)^2} + {\left( {y + 1} \right)^2} + {\left( {z - 1} \right)^2} = 17\)
D. \({\left( {x - 3} \right)^2} + {\left( {y + 1} \right)^2} + {\left( {z - 1} \right)^2} = 15\)
18/11/2021 1 Lượt xem
Câu 6: Trong không gian với hệ tọa độ Oxyz, phương trình tổng quát của mặt phẳng \((\alpha )\) qua A(2; - 1;4), B(3;2; - 1) và vuông góc với \(\left( \beta \right):x + y + 2z - 3 = 0\) là
A. 11x - 7y - 2z - 21 = 0
B. 11x + 7y - 2z - 21 = 0
C. 11x + 7y + 2z + 21 = 0
D. 11x - 7y + 2z + 21 = 0
18/11/2021 1 Lượt xem
Câu hỏi trong đề: Đề thi HK2 môn Toán 12 năm 2021 của Trường THPT Trưng Vương
- 0 Lượt thi
- 60 Phút
- 40 Câu hỏi
- Học sinh
Cùng danh mục Thư viện đề thi lớp 12
- 676
- 0
- 40
-
14 người đang thi
- 722
- 13
- 40
-
93 người đang thi
- 641
- 6
- 30
-
63 người đang thi
- 617
- 7
- 30
-
89 người đang thi
Chia sẻ:
Đăng Nhập để viết bình luận