Câu hỏi: Trong không gian cho hai điểm \(A\left( { - 1;2;3} \right),\,B\left( {0;1;1} \right)\), độ dài đoạn \(AB\) bằng
A. \(\sqrt 6 .\)
B. \(\sqrt 8 .\)
C. \(\sqrt {10} .\)
D. \(\sqrt {12} .\)
Câu 1: Trong các mệnh đề sau, mệnh đề nào đúng ?
A. Hàm số \(y = \dfrac{1}{x}\) có nguyên hàm trên \(( - \infty ; + \infty )\).
B. \(3{x^2}\) là một nguyên hàm của \({x^3}\) trên \(( - \infty ; + \infty )\).
C. Hàm số \(y = |x|\) có nguyên hàm trên \(( - \infty ; + \infty )\).
D. \(\dfrac{1}{x} + C\) là họ nguyên hàm của lnx trên \((0; + \infty )\).
18/11/2021 2 Lượt xem
Câu 2: Để tính \(I = \int\limits_0^{\dfrac{\pi }{2}} {{x^2}\cos x\,dx} \) theo phương pháp tích pân từng phần , ta đặt:
A. \(\left\{ \begin{array}{l}u = x\\dv = x\cos x\,dx\end{array} \right.\).
B. \(\left\{ \begin{array}{l}u = {x^2}\\dv = \cos x\,dx\end{array} \right.\).
C. \(\left\{ \begin{array}{l}u = \cos x\\dv = {x^2}\,dx\end{array} \right.\).
D. \(\left\{ \begin{array}{l}u = {x^2}\cos x\\dv = \,dx\end{array} \right.\)
18/11/2021 1 Lượt xem
Câu 3: Cho tích phân \(I = \int\limits_0^{2004\pi } {\sqrt {1 - \cos 2x} \,dx} \). Phát biểu nào sau đây sai?
A. \(I = \sqrt 2 \cos x\left| \begin{array}{l}2004\pi \\0\end{array} \right.\).
B. \(I = 2004\int\limits_0^\pi {\sqrt {1 - \cos 2x} } \,dx\).
C. \(I = 4008\sqrt 2 \).
D. \(I = 2004\sqrt 2 \int\limits_0^\pi {\sin x\,dx} \).
18/11/2021 1 Lượt xem
Câu 4: Tìm họ các nguyên hàm của hàm số f(x) = 2sinx.
A. \(\int {2\sin x\,dx = {{\sin }^2}x} + C\)
B. \(\int {2\sin x\,dx = 2\cos x} + C\)
C. \(\int {2\sin x\,dx = \sin 2x} + C\)
D. \(\int {2\sin x\,dx = - 2\cos x} + C\)
18/11/2021 2 Lượt xem
Câu 5: Phương trình nào sau đây không phải là phương trình mặt cầu ?
A. \({x^2} + {y^2} + {z^2} - 2x = 0.\)
B. \(2{x^2} + 2{y^2} = {\left( {x + y} \right)^2} - {z^2} + 2x - 1.\)
C. \({x^2} + {y^2} + {z^2} + 2x - 2y + 1 = 0.\)
D. \({\left( {x + y} \right)^2} = 2xy - {z^2} + 1 - 4x.\)
18/11/2021 1 Lượt xem
Câu 6: Tìm nguyên hàm của \(f(x) = 4\cos x + \dfrac{1}{{{x^2}}}\) trên \((0; + \infty )\).
A. \(4\cos x + \ln x + C\).
B. \(4\cos x + \dfrac{1}{x} + C\).
C. \(4\sin x - \dfrac{1}{x} + C\).
D. \(4\sin x + \dfrac{1}{x} + C\).
18/11/2021 1 Lượt xem

- 0 Lượt thi
- 60 Phút
- 40 Câu hỏi
- Học sinh
Cùng danh mục Thư viện đề thi lớp 12
- 594
- 0
- 40
-
13 người đang thi
- 622
- 13
- 40
-
31 người đang thi
- 553
- 3
- 30
-
18 người đang thi
- 531
- 3
- 30
-
12 người đang thi
Chia sẻ:
Đăng Nhập để viết bình luận