Câu hỏi: Trong các khẳng định sau, khẳng định nào sai ?

132 Lượt xem
18/11/2021
3.7 18 Đánh giá

A. Nếu f(x), g(x) là các hàm số liên tục trên R thì \(\int {\left[ {f(x) + g(x)} \right]} \,dx = \int {f(x)\,dx + \int {g(x)\,dx} } \)

B. Nếu các hàm số u(x), v(x) liên tục và có đạo hàm trên R thì \(\int {u(x)v'(x)\,dx + \int {v(x)u'(x)\,dx = u(x)v(x)} } \)

C. Nếu F(x) và G(x) đều là nguyên hàm của hàm số f(x) thì F(x) – G(x) = C ( với C là hằng số )

D. \(F(x) = {x^2}\)  là một nguyên hàm của f(x) = 2x.

Đăng Nhập để xem đáp án
Câu hỏi khác cùng đề thi
Câu 1: Tìm họ các nguyên hàm của hàm số f(x) = 2sinx.

A. \(\int {2\sin x\,dx = {{\sin }^2}x} + C\)

B. \(\int {2\sin x\,dx = 2\cos x} + C\)

C. \(\int {2\sin x\,dx = \sin 2x} + C\)

D. \(\int {2\sin x\,dx = - 2\cos x} + C\)

Xem đáp án

18/11/2021 2 Lượt xem

Câu 2: Tìm nguyên hàm của \(f(x) = 4\cos x + \dfrac{1}{{{x^2}}}\) trên \((0; + \infty )\).

A. \(4\cos x + \ln x + C\). 

B. \(4\cos x + \dfrac{1}{x} + C\).

C. \(4\sin x - \dfrac{1}{x} + C\).

D. \(4\sin x + \dfrac{1}{x} + C\).

Xem đáp án

18/11/2021 1 Lượt xem

Câu 3: Cho F(x) là một nguyên hàm của hàm số \(f(x) = {e^x} + 2x\) thỏa mãn \(F(0) = \dfrac{3}{2}\). Tìm F(x).

A. \(F(x) = {e^x} + {x^2} + \dfrac{3}{4}\).

B. \(F(x) = {e^x} + {x^2} + \dfrac{1}{2}\).

C. \(F(x) = {e^x} + {x^2} + \dfrac{5}{2}\). 

D. \(F(x) = {e^x} + {x^2} - \dfrac{1}{2}\).

Xem đáp án

18/11/2021 2 Lượt xem

Câu 5: Mệnh đề nào sau đây là sai ?

A. \(\int\limits_a^c {f(x)\,dx = \int\limits_a^b {f(x)\,dx + \int\limits_b^c {f(x)\,dx} } } \).

B. \(\int\limits_a^b {f(x)\,dx = \int\limits_a^c {f(x)\,dx - \int\limits_b^c {f(x)\,dx} } } \).

C. \(\int\limits_a^b {f(x)\,dx = \int\limits_b^a {f(x)\,dx + \int\limits_a^c {f(x)\,dx} } } \).

D. \(\int\limits_a^b {cf(x)\,dx =  - c\int\limits_b^a {f(x)\,dx} } \)

Xem đáp án

18/11/2021 1 Lượt xem

Câu 6: Tính tích phân \(\int\limits_{ - \dfrac{\pi }{3}}^{\dfrac{\pi }{3}} {{x^3}\cos x\,dx} \) ta được:

A. \(\dfrac{{2{\pi ^3}\sqrt 3 }}{{27}} + \dfrac{{{\pi ^2}}}{3} + 6 - 4\sqrt 3 \). 

B. \(\dfrac{{{\pi ^3}\sqrt 3 }}{{27}} + \dfrac{{{\pi ^2}}}{6} + 6 - 4\sqrt 3 \).

C. \(\dfrac{{2{\pi ^3}\sqrt 3 }}{{27}} + \dfrac{{{\pi ^2}}}{3} + 3 - 2\sqrt 3 \). 

D. 0

Xem đáp án

18/11/2021 3 Lượt xem

Chưa có bình luận

Đăng Nhập để viết bình luận

Đề thi giữa HK2 môn Toán 12 năm 2021 của Trường THPT Nguyễn Thị Minh Khai
Thông tin thêm
  • 0 Lượt thi
  • 60 Phút
  • 40 Câu hỏi
  • Học sinh